精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,是线段的中点.

(Ⅰ)求证:
(Ⅱ)若垂直于平面,求平面和平面所成的角(锐角)的余弦值.
(I)证明:见解析;(II)平面和平面ABCD所成角(锐角)的余弦值为.

试题分析:(I)由四边形ABCD是等腰梯形,且
可得.
连接,可得
从而得到四边形为平行四边形,
进一步可得平面.
(II)本题解答可有两种思路,一是向量法,二是几何法.
思路一:连接AC,MC,可得
得到.以C为坐标原点,建立直角坐标系.
利用.求角的余弦值.
思路二:按照“一作,二证,三计算”.
过C向AB引垂线交AB于N,连接
平面ABCD,可得
得到为二面角的平面角,
利用直角三角形中的边角关系计算平面和平面ABCD所成角(锐角)的余弦值.

试题解析:(I)证明:因为四边形ABCD是等腰梯形,

所以,又由M是AB的中点,
因此.
连接
在四棱柱中,
因为
可得
所以,四边形为平行四边形,
因此
平面平面
所以平面.

(II)解法一:
连接AC,MC,
由(I)知CD//AM且CD=AM,
所以四边形AMCD为平行四边形,
可得
由题意
所以为正三角形,
因此
因此.
以C为坐标原点,建立直角坐标系.

所以.
因此
所以
设平面的一个法向量
,得
可得平面的一个法向量.
为平面ABCD的一个法向量,
因此.
所以平面和平面ABCD所成角(锐角)的余弦值为.
解法二:
由(I)知,平面平面ABCD=AB,
过C向AB引垂线交AB于N,连接
平面ABCD,可得
因此为二面角的平面角,
中,
可得
所以
中,
所以平面和平面ABCD所成角(锐角)的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD.

(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的多面体中,四边形都为矩形。

(Ⅰ)若,证明:直线平面
(Ⅱ)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面.
(1)证明:平面
(2)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(1)求证:EF∥平面BDC1;  
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直四棱柱中,,底面是直角梯形,是直角,,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·长春质检]如图,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.

查看答案和解析>>

同步练习册答案