精英家教网 > 高中数学 > 题目详情

【题目】“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市交通管理部门于某天晚上8点至11点设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).

(1)求此次拦查中醉酒驾车的人数;

(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X的分布列和数学期望.

【答案】(1)15人;(2)渐近线.

【解析】试题分析:(1)由频率分布直方图得小长方形面积等于对应频率,再根据频数等于总数乘以频率得结果(2)先按分层抽样得含有醉酒驾车者人数,再确定随机变量,利用组合数逐个求对应概率,列表可得分布列,最后根据数学期望公式求期望

试题解析:(1)由已知得,(0.003 2+0.004 3+0.005 0)×20=0.25,0.25×60=15,所以此次拦查中醉酒驾车的人数为15人.

(2)易知利用分层抽样抽取8人中含有醉酒驾车者为2人,所以X的所有可能取值为0,1,2.

P(X=0)=P(X=1)=

P(X=2)=

X的分布列为

E(X)=0×+1×+2×.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成.已知半球的直径是6 cm,圆柱筒高为2 cm.

1这种“浮球”的体积是多少cm3结果精确到0.1?

2要在2 500个这样的“浮球”表面涂一层胶,如果每平方米需要涂胶100克,那么共需胶多少克?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,已知cos2B+cosB=1-cosAcosC.

(1)求证:abc成等比数列;

(2)b=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列命题中:

①若向量ab共线,则向量ab所在的直线平行;

②若向量ab所在的直线为异面直线,则向量ab一定不共面;

③若三个向量abc两两共面,则向量abc共面;

④已知空间的三个向量,则对于空间的任意一个向量,总存在实数xyz,使得

正确命题的个数是(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Mx2+y-22=1Qx轴上的动点,QAQB分别切圆MAB两点。

1)若Q10),求切线QAQB的方程;

2)求四边形QAMB面积的最小值;

3)若|AB|=,求直线MQ的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为实数).

(1) 若函数处的切线与直线平行,求实数a的值;

(2) 若,求函数在区间上的值域;

(3) 若函数在区间上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年一交警统计了某段路过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:

车速

事故次数

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)试根据(2)求出的线性回归方程,预测2017年该路段路况及相关安全设施等不变的情况下,车速达到时,可能发生的交通事故次数.

(参考数据:

[参考公式:]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

【答案】(1);(2)

【解析】试题分析:

先由命题解;命题

(1)当,得命题,再由为真,得真且真,即可求解的取值范围.

(2)由的充分不必要条件,则的充分必要条件,根据则 ,即可求解实数的取值范围.

试题解析:

命题:由题得,又,解得

命题 ,解得

(1)若,命题为真时,

为真,则真且真,

解得的取值范围是

(2)的充分不必要条件,则的充分必要条件,

,则

∴实数的取值范围是

型】解答
束】
19

【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.

(1)求此抛物线的方程;

(2)若此抛物线方程与直线相交于不同的两点,且中点横坐标为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.

查看答案和解析>>

同步练习册答案