精英家教网 > 高中数学 > 题目详情

【题目】已知函数的极小值为1.

(1)求a的值;

(2)当时,对任意,有成立,求整数b的最大值。

【答案】(1)详见解析;(2)2.

【解析】

1)求导,根据的不同取值,进行分类讨论,根据极值,求出的值;

2)由(1)可知,对函数进行求导,求出函数的最大值,

,比较的大小,作差,设新函数,求导,最后可求出的最大值为,对任意,有成立,只需.设函数,求导,最后求出整数b的最大值.

解:(1)函数的定义域为.

①当时,上单调递增,

所以无极值;

②当时,由,得

时,上单调递减;

时,上单调递增,

所以的极小值为

解得.

(2)当时,

由(1)知,当时,上单调递减;

时,上单调递增,

所以

所以时,上单调递增,

所以,故

因此的最大值为

而对任意,有成立,只需.

,则

所以上单调递增.

由于

又由于b为正数,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解居民消费情况,某地区调查了10000户小家庭的日常生活平均月消费金额,根据所得数据绘制了样本频率分布直方图,如图所示,每户小家庭的平均月消费金额均不超过9千元,其中第六组第七组第八组尚未绘制完成,但是已知这三组的频率依次成等差数列,且第六组户数比第七组多500户,

(1)求第六组第七组第八组的户数,并补画图中所缺三组的直方图;

(2)若定义月消费在3千元以下的小家庭为4类家庭,定义月消费在3千元至6千无的小家庭为B类家庭,定义月消费6千元以上的小家庭为C类家庭,现从这10000户家庭中按分层抽样的方法抽取80户家庭召开座谈会,间ABC各层抽取的户数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线.

(Ⅰ)求曲线C的方程;

(Ⅱ)设Q为曲线C上的一个不在轴上的动点,O为坐标原点,过点OQ的平行线交曲线CM,N两个不同的点, 求△QMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,面为正方形,,且二面角与二面角都是.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《流浪地球》是由刘慈欣的科幻小说改编的电影,在2019年春节档上影,该片上影标志着中国电影科幻元年的到来;为了振救地球,延续百代子孙生存的希望,无数的人前仆后继,奋不顾身的精神激荡人心,催人奋进.某网络调查机构调查了大量观众的评分,得到如下统计表:

1)求观众评分的平均数?

2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?

3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用表示评分为10分的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人各自独立的参加某单位面试,规定每位考生需要从编号为1-66道面试题中随机抽出3道进行面试,至少答对两道才能合格.已知甲能答对其中3道题,乙能答对其中4道题.

1)求甲恰好答对两道题的概率.

2)求甲合格且乙不合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆一中将要举行校园歌手大赛,现有33女参加,需要安排他们的出场顺序.(结果用数字作答

1)如果3个女生都不相邻,那么有多少种不同的出场顺序?

2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序?

3)如果3位男生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ex-mx+1+1mR).

1)若函数fx)的极小值为1,求实数m的值;

2)当x≥0时,不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=4x的焦点为F,过点F且斜率为1的直线与抛物线C交于AB两点,若在以线段AB为直径的圆上存在两点MN,在直线x+y+a=0上存在一点Q,使得MQN=90°,则实数a的取值范围为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案