精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,P为直线上的动点,动点Q满足,且原点O在以为直径的圆上.记动点Q的轨迹为曲线C

1)求曲线C的方程:

2)过点的直线与曲线C交于AB两点,点D(异于AB)在C上,直线分别与x轴交于点MN,且,求面积的最小值.

【答案】12

【解析】

1)设动点,表示出,再由原点O在以为直径的圆上,转化为,得到曲线C的方程.

2)设而不解,利用方程思想、韦达定理构建面积的函数关系式,再求最小值.

解:(1)由题意,不妨设,则

O在以为直径的圆上,∴

,∴曲线C的方程为.

2)设

依题意,可设(其中),由方程组消去x并整理,得

,则

同理可设

可得

又∵,∴

,∴

∴当时,面积取得最小值,其最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

是偶函数;的最大值为

个零点;在区间单调递增.

其中所有正确结论的编号是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位在2019年重阳节组织50名退休职工(男、女各25名)旅游,退休职工可以选择到甲、乙两个景点其中一个去旅游.他们最终选择的景点的结果如下表:

男性

女性

甲景点

20

10

乙景点

5

15

1)据此资料分析,是否有的把握认为选择哪个景点与性别有关?

2)按照游览不同景点用分层抽样的方法,在女职工中选取5人,再从这5人中随机抽取2人进行采访,求这2人游览的景点不同的概率.

附:,.

P

0.010

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上一点关于原点的对称点为,点 的面积为,直线上的点.

1)求的方程;

2)设的短轴端点,直线过点,证明:四边形的两条对角线的交点在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直线与椭圆交于两个不同点,且的面积,其中为坐标原点.

1)证明均为定值;

2)设线段的中点为,求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,海岸公路MN的北方有一个小岛A(大小忽略不计)盛产海产品,在公路MNB处有一个海产品集散中心,点CB的正西方向10处,,计划开辟一条运输线将小岛的海产品运送到集散中心.现有两种方案:①沿线段AB开辟海上航线:②在海岸公路MN上选一点P建一个码头,先从海上运到码头,再公路MN运送到集散中心.已知海上运输、岸上运输费用分别为400/200/.

1)求方案①的运输费用;

2)请确定P点的位置,使得按方案②运送时运输费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体中,平面平面的中点.

1)求证:平面

2)求多面体的体积;

3)求平面和平面所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数fx)在(﹣∞,0]上单调递增,且f(﹣1)=﹣1.fx1+10,则x的取值范围是_____;设函数若方程fgx))+10有且只有两个不同的实数解,则实数a的取值范围为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(注:雷达图,又可称为戴布拉图、蜘蛛网图,可用于对研究对象的多维分析)(

A.甲的直观想象素养高于乙

B.甲的数学建模素养优于数据分析素养

C.乙的数学建模素养与数学运算素养一样

D.乙的六大素养整体水平低于甲

查看答案和解析>>

同步练习册答案