【题目】双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系中,把到定点,距离之积等于()的点的轨迹称为双纽线C.已知点是双纽线C上一点,下列说法中正确的有( )
①双纽线C关于原点O中心对称; ②;
③双纽线C上满足的点P有两个; ④的最大值为.
A.①②B.①②④C.②③④D.①③
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线:(为参数,),曲线:(为参数),与相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求的极坐标方程及点的极坐标;
(2)已知直线:与圆:交于,两点,记的面积为,的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了保障某种药品的主要药理成分在国家药品监督管理局规定的值范围内,某制药厂在该药品的生产过程中,检验员在一天中按照规定每间隔2小时对该药品进行检测,每天检测4次:每次检测由检验员从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:)根据生产经验,可以认为这条药品生产线正常状态下生产的产品的其主要药理成分含量服从正态分布.
(1)假设生产状态正常,记表示某次抽取的20件产品中其主要药理成分含量在之外的药品件数,求的数学期望;
(2)在一天的四次检测中,如果有一次出现了主要药理成分含量在之外的药品,就认为这条生产线在这一天的生产过程可能出现异常情况,需对本次的生产过程进行检查;如果有两次或两次以上出现了主要药理成分含量在之外的药品,则需停止生产并对原材料进行检测.
①下面是检验员在某次抽取的20件药品的主要药理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 10.05 | 10.05 | 9.96 | 10.12 |
经计算得,,.其中为抽取的第件药品的主要药理成分含量,用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对本次的生产过程进行检查?
②试确定一天中需停止生产并对原材料进行检测的概率(精确到0.001).
附:若随机变量服从正态分布,则,,,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:
(1)求表中的值和频率分布直方图中的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;
(2)如果用分层抽样的方法从样本服务次数在和的人中共抽取6人,再从这6人中选2人,求2人服务次数都在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】孙子定理是中国古代求解一次同余式组的方法,是数论中一个重要定理,最早可见于中国南北朝时期的数学著作《孙子算经》,年英国来华传教士伟烈亚力将其问题的解法传至欧洲,年英国数学家马西森指出此法符合年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.这个定理讲的是一个关于整除的问题,现有这样一个整除问题:将至这个整数中能被除余且被除余的数按由小到大的顺序排成一列构成一数列,则此数列的项数是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的倾斜角为,且经过点,以坐标原点O为极点,轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足| ,记点N的轨迹为曲线C.
(1)①设动点,记是直线的向上方向的单位方向向量,且,以t为参数求直线的参数方程
②求曲线C的极坐标方程并化为直角坐标方程;
(2)设直线与曲线C交于P,Q两点,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com