精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=lg(ax-1)(a>0,且a≠1),求f(x)的定义域.

分析 直接利用对数的真数大于0,求解函数的定义域即可.

解答 解:函数f(x)=lg(ax-1)有意义可得:ax-1>0,即ax>1=a0
当a>1时,x>0,
当0<a<1时,x<0,
函数的定义域:当a>1时,{x|x>0},
当0<a<1时,{x|x<0}.

点评 本题考查函数的定义域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知关于x的方程log2(x+24)-log4x2=a在区间(3,8)内有解,则a的取值范围是a∈(2,log29).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{sinα}{|sinα|}$+$\frac{|cosα|}{cosα}$+$\frac{tanα}{|tanα|}$+$\frac{|tanα|}{tanα}$=0,确定sin(cosα)•tan(sin$\frac{α}{2}$)的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数f(x)=|x2-1|在点x=x0处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18.若函数y=f(x)-loga(|x|+1)在R上至少有四个零点,则a的取值范围是0<a≤$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知0<a<1,若loga$\frac{2}{3}$<1,则实数a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(0,1)C.(0,$\frac{2}{3}$)D.(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若-$\frac{2π}{3}$≤θ≤$\frac{π}{6}$,利用三角函数线,可得sinθ的取值范围是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于抛物线y=4x2,下列描述正确的是(  )
A.开口向上B.开口向下C.开口向左D.开口向右

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lg(5-x),若f(2k-1)<f(k+1),则实数k的取值范围是2<k<3.

查看答案和解析>>

同步练习册答案