精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则$\overrightarrow{a}$在$\overrightarrow{b}$的方向上的投影是-1.

分析 则$\overrightarrow{a}$在$\overrightarrow{b}$的方向上的投影是$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$,代入数值计算即可.

解答 解:由向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=-3
则$\overrightarrow{a}$在$\overrightarrow{b}$的方向上的投影是$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{-3}{3}$=-1,
故答案为:-1

点评 本题考查向量投影的求法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图一半径为3米的水轮,水轮的圆心O距离水面2米,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(米)与时间x(秒)满足函数关系y=Asin(ωx+φ)+2则有(  )
A.ω=$\frac{2π}{15}$,A=3B.ω=$\frac{2π}{15}$,A=5C.ω=$\frac{15π}{2}$,A=5D.ω=$\frac{15π}{2}$,A=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤2}\\{y≤2}\end{array}\right.$,则z=$\frac{1}{2}$x+y的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若变量x,y满足条件$\left\{\begin{array}{l}x+2y≥1\\ x+4y≤3\\ y≥0\end{array}\right.$则z=x+y的最大值是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.2B.1C.1或2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等比数列{an}前n项和为Sn,且S3=8,S6=9,则公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“$\frac{周实际回收水费}{周投入成本}$”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:
 第一周  第二周第三周  第四周
 第一个周期 95% 98% 92% 88%
 第二个周期 94% 94% 83% 80%
 第三个周期 85%92%  95%96% 
(1)计算表中十二周“水站诚信度”的平均数$\overline{x}$;
(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X的分布列和期望;
(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.集合A={x|y=ln(1-2x)},B={x|x2<x},全集U=A∪B,则∁U(A∩B)=(  )
A.(-∞,0)B.$[\frac{1}{2},1]$C.(-∞,0)∪$[\frac{1}{2},1]$D.$(-\frac{1}{2},0]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:直线$x+2y-\sqrt{2}=0$与直线$x+2y-6\sqrt{2}=0$之间的距离不大于1,命题q:椭圆2x2+27y2=54与双曲线9x2-16y2=144有相同的焦点,则下列命题为真命题的是(  )
A.p∧(¬q)B.(¬p)∧qC.(¬p)∧(¬q)D.p∧q

查看答案和解析>>

同步练习册答案