精英家教网 > 高中数学 > 题目详情
19.抛物线y2=2px(p>0)的焦点为F,其准线与双曲线y2-x2=1相交于A,B两点,若△ABF为等边三角形,则p=$2\sqrt{3}$.

分析 求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线与双曲线的交点坐标,利用三角形是等边三角形求出p即可.

解答 解:抛物线的焦点坐标为($\frac{p}{2}$,0),准线方程为:x=-$\frac{p}{2}$,
准线方程与双曲线y2-x2=1联立可得:y2-(-$\frac{p}{2}$)2=1,
解得y=±$\sqrt{1+\frac{{p}^{2}}{4}}$,
因为△ABF为等边三角形,所以$\sqrt{{y}^{2}+{p}^{2}}$=2|y|,即p2=3y2
即p2=3(1+$\frac{{p}^{2}}{4}$),解得p=$2\sqrt{3}$.
故答案为:$2\sqrt{3}$.

点评 本题考查抛物线的简单性质,双曲线方程的应用,考查分析问题解决问题的能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知复数z1满足z1•i=1+i(i为虚数单位),复数z2的虚部为2.
(Ⅰ)求z1
(Ⅱ)若z1•z2是纯虚数,求z2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是 (  )
A.①⑤⑥,②③④B.①③⑤,②④⑥C.①②③,④⑤⑥D.①②⑥,③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知M1={第一象限角},M2={锐角}.M3={0°~90°的角},M4={小于90°的角},则(  )
A.M1=M2=M3=M4B.M1?M2?M3?M4C.M1⊆M2⊆M3⊆M4D.M2⊆M3且M2⊆M4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有以下程序:
  
根据以上程序,若函数g(x)=f(x)-m在R上有且只有两个零点,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某班50名学生中有女生20名,按男女比例用分层抽样的方法,从全班学生中抽取部分学生进行调查,已知抽到的女生有4名,则本次调查抽取的人数是(  )
A.8B.10C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.王师傅为响应国家开展全民健身运动的号召,每天坚持“健步走”,并用计步器对每天的“健步走”步数进行统计,他从某个月中随机抽取10天“健步走”的步数,绘制出的频率分布直方图如图所示.
(1)试估计该月王师傅每天“健步走”的步数的中位数及平均数(精确到小数点后1位);
(2)某健康组织对“健步走”结果的评价标准为:
每天的步数分组
(千步)
[8,10)[10,12)[12,14]
评价级别及格良好优秀
现从这10天中评价级别是“良好”或“及格”的天数里随机抽取2天,求这2天的“健步走”结果属于同一评价级别的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)若点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,求直线AB的方程.
(2)若直线y=2x+b与圆x2+y2=4相交A,B两点,求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的三角形数阵叫“牛顿调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}=\frac{1}{2}+\frac{1}{2}$,$\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$,$\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,…,
则第2016行第3个数(从左往右数)为(  )
A.$\frac{1}{2016×2015×2014}$B.$\frac{1}{2016×2017}$C.$\frac{1}{2016×2015×1006}$D.$\frac{1}{2016×2015×1007}$

查看答案和解析>>

同步练习册答案