【题目】已知函数和同时满足以下两个条件:
(1)对于任意实数,都有或;
(2)总存在,使成立.
则实数的取值范围是 __________.
【答案】
【解析】
由于g(x)=≥0时,x≥3,根据题意有f(x)=m(x﹣m)(x+2m+3)<0在x≥3时成立;由于x∈(﹣∞,﹣1),f(x)g(x)<0,而g(x)=3x﹣3<0,则f(x)=m(x﹣m)(x+2m+3)>0在x∈(﹣∞,﹣1)时成立.由此结合二次函数的性质可求出结果.
对于①∵g(x)=,当x<3时,g(x)<0,
又∵①x∈R,f(x)<0或g(x)<0
∴f(x)=m(x﹣m)(x+2m+3)<0在x≥3时恒成立
则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(3,0)的左面,
即 可得﹣3<m<0
又∵②x∈(﹣∞,﹣1),f(x)g(x)<0
∴此时g(x)=<0恒成立
∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣1)有成立的可能,
则只要﹣1比x1,x2中的较小的根大即可,
(i)当﹣1<m<0时,较小的根为﹣2m﹣3,f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣1)有成立的可能,
(ii)当m=﹣1时,两个根同为﹣1,f(x)<0在区间内恒成立,故不满足题意。
(iii)当﹣3<m<﹣1时,较小的根为m,f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣1)有成立的可能,
综上可得①②成立时﹣3<m<﹣1或-1<m<0.
故答案为:.
科目:高中数学 来源: 题型:
【题目】已知函数对一切实数都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,设:当时,不等式 恒成立;Q:当时,是单调函数。如果满足成立的的集合记为,满足Q成立的的集合记为,求A∩(CRB)(为全集).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD的底面ABCD为菱形,且∠ABC=60°,
AB=PC=2,PA=PB= .
(1)求证:平面PAB⊥平面ABCD;
(2)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要制作一个容积为8m3 , 高为2m的无盖长方体容器,若容器的底面造价是每平方米200元,侧面造型是每平方米100元,则该容器的最低总造价为( )
A.1200元
B.2400元
C.3600元
D.3800元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=.
(1)判断函数f(x)的奇偶性;
(2)判断并用定义证明函数f(x)在其定义域上的单调性.
(3)若对任意的t1,不等式f()+f()<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列函数中与f(x)=x是同一函数的有( )
①y=②y=③y=④y=⑤f(t)=t⑥g(x)=x
A. 1 个 B. 2 个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市“招手即停”公共汽车的票价按下列规则制定:
5公里以内(含5公里),票价2元;
5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意.
(1)写出票价与里程之间的函数解析式;
(2)根据(1)写出的函数解析式试画出该函数的图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com