【题目】已知函数.
(Ⅰ)当时,讨论函数的单调区间;
(Ⅱ)若对任意的和恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“”的否定是“”
B.命题“已知,若则或”是真命题
C.命题“若则函数只有一个零点”的逆命题为真命题
D.“在上恒成立”在上恒成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】绝大部分人都有患呼吸系统疾病的经历,现在我们调查患呼吸系统疾病是否和所处环境有关.一共调查了人,患有呼吸系统疾病的人,其中人在室外工作,人在室内工作.没有患呼吸系统疾病的人,其中人在室外工作,人在室内工作.
(1)现采用分层抽样从室内工作的居民中抽取一个容量为的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.
(2)你能否在犯错误率不超过的前提下认为感染呼吸系统疾病与工作场所有关;
附表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.
(1)求椭圆的方程;
(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某少数民族的刺绣有着悠久的历史,如图4①,②,③,④为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;
(3)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现安排6名同学前往4所学校进行演讲,要求甲、乙两同学不能前往同一个学校,每个学校都有人前往,每人只前往一个学校,则满足上述要求的不同安排方案数为________.(用数字作答)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在△ABC中,D是BC边上的一点,且AB=14,BD=6,∠ADC=,.
(Ⅰ)求sin∠DAC;
(Ⅱ)求AD的长和△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.
(1)求椭圆的标准方程;
(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com