精英家教网 > 高中数学 > 题目详情

【题目】如图是一建筑物的三视图(单位: ),现需将其外壁用油漆粉刷一遍,已知每平方米用漆,问需要油漆多少千克?(无需求近似值)

【答案】

【解析】试题分析:由三视图可知该建筑是一个正四棱柱+圆锥形成的组合体,根据三视图得圆锥的底面半径及母线长,正四棱柱的高及底面正方形的边长,再根据面积公式算出圆锥的表面积及四棱柱的底面积与侧面积,然后根据每平方米用漆即可算出所需油漆的质量.

试题解析:由三视图知建筑物为一组合体,自上而下分别是圆锥和正四棱柱,并且圆锥的底面半径为3 m,母线长为5 m,正四棱柱的高为4 m,底面是边长为3 m的正方形,圆锥的表面积为πr2πrl15π24π (m2);四棱柱的一个底面积为9 m2,正四棱柱的侧面积为4×4×348 (m2),所以外壁面积为24π948(24π39) (m2)

所以需要油漆(24π39)×0.2(4.8π7.8) (kg)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图当输入的x的值为04输出的值相等根据该图和下列各小题的条件解答下面的几个问题.

(1)该程序框图解决的是一个什么问题?

(2)当输入的x的值为3求输出的f(x)的值;

(3)要想使输出的值最大求输入的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为

(Ⅰ)请将上述列联表补充完整,并判断是否有的把握认为喜欢游泳与性别有关?并说明你的理由;

(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.

参考公式:,其中

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一段演绎推理:直线平行于平面,则这条直线平行于平面内所有直线;已知直线平面,直线平面,直线平面,则直线直线的结论是错误的,这是因为 ( )

A. 大前提错误 B. 小前提错误 C. 推理形式错误 D. 非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=exe-x(xRe为自然对数的底数).

(1)判断函数f(x)的奇偶性与单调性.

(2)是否存在实数t使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在求出t;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14)

如图的几何体中, 平面平面为等边三角形的中点.

1)求证: 平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.

(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;

(2)请分析比较甲、乙两人谁面试通过的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的半径为,圆心在直线y=2x,圆被直线x-y=0截得的弦长为4,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数),每人每年可创利b万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b万元,但公司需付下岗职员每人每年0.4b万元的生活费,并且该公司正常运转所需人数不得小于现有职员的,为获得最大的经济效益,该公司应裁员多少人?

查看答案和解析>>

同步练习册答案