【题目】如图是一建筑物的三视图(单位: ),现需将其外壁用油漆粉刷一遍,已知每平方米用漆,问需要油漆多少千克?(无需求近似值)
【答案】
【解析】试题分析:由三视图可知该建筑是一个正四棱柱+圆锥形成的组合体,根据三视图得圆锥的底面半径及母线长,正四棱柱的高及底面正方形的边长,再根据面积公式算出圆锥的表面积及四棱柱的底面积与侧面积,然后根据每平方米用漆即可算出所需油漆的质量.
试题解析:由三视图知建筑物为一组合体,自上而下分别是圆锥和正四棱柱,并且圆锥的底面半径为3 m,母线长为5 m,正四棱柱的高为4 m,底面是边长为3 m的正方形,圆锥的表面积为πr2+πrl=9π+15π=24π (m2);四棱柱的一个底面积为9 m2,正四棱柱的侧面积为4×4×3=48 (m2),所以外壁面积为24π-9+48=(24π+39) (m2).
所以需要油漆(24π+39)×0.2=(4.8π+7.8) (kg).
科目:高中数学 来源: 题型:
【题目】如图所示的程序框图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件解答下面的几个问题.
(1)该程序框图解决的是一个什么问题?
(2)当输入的x的值为3时,求输出的f(x)的值;
(3)要想使输出的值最大,求输入的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为.
(Ⅰ)请将上述列联表补充完整,并判断是否有的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一段演绎推理:“直线平行于平面,则这条直线平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论是错误的,这是因为 ( )
A. 大前提错误 B. 小前提错误 C. 推理形式错误 D. 非以上错误
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性.
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;
(2)请分析比较甲、乙两人谁面试通过的可能性大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数),每人每年可创利b万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b万元,但公司需付下岗职员每人每年0.4b万元的生活费,并且该公司正常运转所需人数不得小于现有职员的,为获得最大的经济效益,该公司应裁员多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com