¸ø³öÏÂÁÐÎå¸ö½áÂÛ£º
¢ÙÈô¼¯ºÏA={x¡ÊR|0¡Üx¡Ü1}£¬B={x¡ÊN|lgx£¼1}£¬ÔòA¡ÉB={1}£»
¢ÚÒÑÖªÖ±Ïßl1£ºax+3y-1=0£¬l2£ºx+by+1=0£¬Ôòl1¡Íl2µÄ³äÒªÌõ¼þÊÇÊýѧ¹«Ê½£»
¢ÛÈô¡÷ABCµÄÄÚ½ÇAÂú×ãÊýѧ¹«Ê½£¬ÔòÊýѧ¹«Ê½£»
¢Üº¯Êýf£¨x£©=|sinx|µÄÁãµãΪk¦Ð£¨k¡ÊZ£©£®
¢ÝÈô2»¡¶ÈµÄÔ²ÐĽÇËù¶ÔµÄ»¡³¤Îª4cm£¬ÔòÕâ¸öÔ²ÐĽÇËùÔÚÉÈÐεÄÃæ»ýΪ2cm2£®
ÆäÖУ¬½áÂÛÕýÈ·µÄÊÇ________£®£¨½«ËùÓÐÕýÈ·½áÂÛµÄÐòºÅ¶¼Ð´ÉÏ£©

¢Ù¢Ü
·ÖÎö£º¢Ù½«¼¯ºÏBÓÃÁоٷ¨±íʾ£¬ÀûÓý»¼¯µÄ¶¨ÒåÒ׵âÙÕýÈ·£»¢ÚÁ½Ö±Ïß´¹Ö±µÄ³äÒªÌõ¼þΪa+3b=0£¬¹Ê¿ÉÓþٷ´Àý·¨Åųý¢Ú£»¢ÛÖ»Ðè¸ù¾ÝÌâÒâËõС½ÇAµÄ·¶Î§£¬¼´¿ÉÅжÏËùÇóÖµÒ»¶¨´óÓÚÁ㣬Åųý¢Û£»¢Ü½âÈý½Ç·½³Ì¼´¿ÉµÃÆäÁãµã£»¢ÝÀûÓû¡³¤¹«Ê½¼ÆËãÉÈÐΰ뾶£¬ÀûÓÃÉÈÐÎÃæ»ý¹«Ê½¼ÆËã´ËÉÈÐÎÃæ»ý¼´¿É
½â´ð£º¢Ù¡ßA=[0£¬1]£¬B={1£¬2£¬3£¬4£¬5£¬6£¬7£¬8£¬9}£¬¡àA¡ÉB={1}£¬¢ÙÕýÈ·£»
¢Úµ±a=0£¬b=0ʱ£¬Á½Ö±Ïß´¹Ö±£¬µ«ÎÞÒâÒ壬¢Ú´íÎó£»
¢Û¡ßA¡Ê£¨0£¬¦Ð£©£¬¡àsinA£¾0£¬Ó֡ߣ¾0£¬¡àcosA£¾0£¬¡àA¡Ê£¨0£¬£©£¬¡àsinA+cosA£¾0£¬²»¿ÉÄܵÈÓÚ£¬¢Û´íÎó£»
¢Ü¡ßf£¨x£©=|sinx|=0?sinx=0?x=k¦Ð£¬£¨k¡ÊZ£©£¬¡àº¯Êýf£¨x£©=|sinx|µÄÁãµãΪk¦Ð£¨k¡ÊZ£©£¬¢ÜÕýÈ·£»
¢Ý¡ß»¡³¤l=|¦Á|¡Ár£¬¡à4=2¡Ár£¬¡à´ËÔ²°ë¾¶r=2£¬¡ßÉÈÐεÄÃæ»ýs=lr£¬¡àÕâ¸öÔ²ÐĽÇËùÔÚÉÈÐεÄÃæ»ýΪ¡Á4¡Á2=4cm2£®¢Ý´íÎó£»
¹Ê´ð°¸Îª ¢Ù¢Ü
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˼¯ºÏµÄ±íʾ·½·¨¼°ÆäÔËË㣬Á½Ö±ÏßµÄλÖùØϵÓëÖ±Ïß·½³Ì£¬Èý½ÇÐÎÖеÄÈý½Çº¯ÊýÖµµÄ¼ÆË㣬ÕýÏÒº¯ÊýµÄÁãµã¼°»¡¶ÈÖÆϵĻ¡³¤ºÍÉÈÐÎÃæ»ýµÄ¼ÆË㹫ʽµÈ»ù´¡ÖªÊ¶
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸ö½áÂÛ£º
¢Ù?x¡ÊR£¬2x£¾x2
¢Ú¡°Èôx2£¼1£¬Ôò-1£¼x£¼1¡±µÄÄæ·ñÃüÌâÊÇ¡°Èô-1£¼x£¼1£¬Ôòx2¡Ý1¡±£»
¢ÛÒªµÃµ½y=cos2xµÄͼÏó£¬Ö»ÐèÒª½«y=sin£¨2x+
¦Ð
4
£©µÄͼÏóÏò×óƽÒÆ
¦Ð
8
¸öµ¥Î»£»
¢ÜÔÚ¡÷ABCÖУ¬Èô
AB
CA
£¾0£¬Ôò¡ÏAΪÈñ½Ç£»
¢Ýº¯Êýf£¨x£©=sin£¨2x+
¦Ð
3
£©ÔÚ[0£¬
¦Ð
12
]ÉÏÊÇÔöº¯Êý£¬ÔÚ[
¦Ð
12
£¬
¦Ð
2
]ÉÏÊǼõº¯Êý£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
¢Û¢Ý
¢Û¢Ý
£®£¨ÌîдÄãÈÏΪÕýÈ·µÄËùÓнáÂÛÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèmax{sinx£¬cosx}±íʾsinxÓëcosxÖеĽϴóÕߣ®Èôº¯Êýf£¨x£©=max{sinx£¬cosx}£¬¸ø³öÏÂÁÐÎå¸ö½áÂÛ£º
¢Ùµ±ÇÒ½öµ±x=2k¦Ð+¦Ð£¨¦Ð¡ÊZ£©Ê±£¬f£¨x£©È¡µÃ×îСֵ£»
¢Úf£¨x£©ÊÇÖÜÆÚº¯Êý£»
¢Ûf£¨x£©µÄÖµÓòÊÇ[-1£¬1]£»
¢Üµ±ÇÒ½öµ±£¼x£¼2kx+
3¦Ð
2
£¨k¡ÊZ£©Ê±£¬f£¨x£©£¼0£»
¢Ýf£¨x£©ÒÔÖ±Ïßx=kx+
¦Ð
4
£¨k¡ÊZ£©Îª¶Ô³ÆÖᣮ
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅΪ
¢Ú¢Ü¢Ý
¢Ú¢Ü¢Ý
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸ö½áÂÛ£º
¢Ùº¯Êýy=2sin(2x-
¦Ð
3
)
ÓÐÒ»Ìõ¶Ô³ÆÖáÊÇx=
5¦Ð
12
£»
¢Úº¯Êýy=tanxµÄͼÏó¹ØÓڵ㣨
¦Ð
2
£¬0£©¶Ô³Æ£»
¢ÛÕýÏÒº¯ÊýÔÚµÚÒ»ÏóÏÞΪÔöº¯Êý£»
¢ÜÒªµÃµ½y=3sin(2x+
¦Ð
4
)
µÄͼÏó£¬Ö»Ð轫y=3sin2xµÄͼÏó×óÒÆ
¦Ð
4
¸öµ¥Î»£»
¢ÝÈôsin(2x1-
¦Ð
4
)=sin(2x2-
¦Ð
4
)
£¬Ôòx1-x2=k¦Ð£¬ÆäÖÐk¡ÊZ£»
ÆäÖÐÕýÈ·µÄÓÐ
¢Ù¢Ú
¢Ù¢Ú
£®£¨ÌîдÕýÈ·½áÂÛÇ°ÃæµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸ö½áÂÛ£º
¢ÙÈô¼¯ºÏA={x¡ÊR|0¡Üx¡Ü1}£¬B={x¡ÊN|lgx£¼1}£¬ÔòA¡ÉB={1}£»
¢ÚÒÑÖªÖ±Ïßl1£ºax+3y-1=0£¬l2£ºx+by+1=0£¬Ôòl1¡Íl2µÄ³äÒªÌõ¼þÊÇ
a
b
=-3
£»
¢ÛÈô¡÷ABCµÄÄÚ½ÇAÂú×ãsinAcosA=
1
3
£¬ÔòsinA+cosA=¡À
15
3
£»
¢Üº¯Êýf£¨x£©=|sinx|µÄÁãµãΪk¦Ð£¨k¡ÊZ£©£®
¢ÝÈô2»¡¶ÈµÄÔ²ÐĽÇËù¶ÔµÄ»¡³¤Îª4cm£¬ÔòÕâ¸öÔ²ÐĽÇËùÔÚÉÈÐεÄÃæ»ýΪ2cm2£®
ÆäÖУ¬½áÂÛÕýÈ·µÄÊÇ
¢Ù¢Ü
¢Ù¢Ü
£®£¨½«ËùÓÐÕýÈ·½áÂÛµÄÐòºÅ¶¼Ð´ÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸ö½áÂÛÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢ÙÈôʵÊýx£¬yÂú×㣨x-2£©2+y2=3£¬Ôò
y
x
µÄ×î´óֵΪ
3
£»¢ÚÍÖÔ²
x2
4
+
y2
3
=1
ÓëÍÖÔ²
x2
2
+
2y2
3
=1
ÓÐÏàͬµÄÀëÐÄÂÊ£»¢ÛË«ÇúÏß
x2
2-k
+
y2
3-k
=1
µÄ½¹µã×ø±êÊÇ£¨1£¬0£©£¬£¨-1£¬0£©¢ÜÔ²x2+y2=1ÓëÖ±Ïßy=kx+2ûÓР¹«¹²µãµÄ³äÒªÌõ¼þÊÇk¡Ê(-
3
£¬
3
)
¢ÝÉèa£¾1£¬ÔòË«ÇúÏß
x2
a2
-
y2
(a+1)2
=1
µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§ÊÇ(
2
£¬
5
)
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸