精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证: 为定值.

【答案】11

2±见解析

【解析】试题分析:(1)解:因为椭圆C满足 ,根据椭圆短轴的一个端点与两个焦点构成的三角形的面积为,可得,据此即可求出椭圆C的标准方程;(2代入中,消元得,然后再利用韦达定理和中点坐标公式即可求出结果;,所以代入韦达定理化简即可证明结果.

试题解析:(1)解:因为椭圆C满足

根据椭圆短轴的一个端点与两个焦点构成的三角形的面积为

可得

从而可解得

所以椭圆C的标准方程为

2解:设

代入中,

消元得

因为AB中点的横坐标为,所以,解得

证明:由

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点的直线与圆相切,且与直线垂直,则( )

A. 2 B. 1 C. D.

【答案】A

【解析】因为点P(2,2)满足圆的方程,所以P在圆上,

又过点P(2,2)的直线与圆相切,且与直线axy+1=0垂直,

所以切点与圆心连线与直线axy+1=0平行,

所以直线axy+1=0的斜率为: .

故选A.

点睛:对于直线和圆的位置关系的问题,可用“代数法”或“几何法”求解,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,解题时不要单纯依靠代数计算,若选用几何法可使得解题过程既简单又不容易出错.

型】单选题
束】
23

【题目】分别是双曲线的左、右焦点.若点在双曲线上,且,则 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若平面点集满足:任意点存在都有则称该点集阶聚合点集。现有四个命题

,则存在正数,使得阶聚合点集

,则是“阶聚合”点集;

③若,则是“2阶聚合”点集;

④若是“阶聚合”点集,则的取值范围是.

其中正确命题的序号为( )

A. ①④ B. ②③ C. ①② D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 底面 是棱上一点.

I)求证:

II)若 分别是 的中点,求证: 平面

III)若二面角的大小为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直线)上一动点, 是圆的两条切线, 为切点, 为圆心,若四边形面积的最小值是,则的值是( )

A. B. C. D.

【答案】D

【解析】∵圆的方程为:

∴圆心C(0,1),半径r=1.

根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线l的距离最小时,切线长PA,PB最小。切线长为4,

∴圆心到直线l的距离为.

∵直线

,解得

所求直线的斜率为

故选D.

型】单选题
束】
19

【题目】抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点 ,垂足为,则的面积是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形与梯形全等, 中点.

(Ⅰ)证明: 平面

(Ⅱ)点在线段上(端点除外),且与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).若函数的图象在处相切,

Ⅰ)求的解析式;

Ⅱ)设函数 ,若上的最小值为,求实数的值;

Ⅲ)设函数,若上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案