精英家教网 > 高中数学 > 题目详情

【题目】在边长为4的正方形ABCD的边上有动点P,动点P从B点开始沿折线BCDA运动到A终止,设P点移动的距离为x,的面积为S.

(1)求函数S=f(x)的解析式、定义域,画出函数图像;

(2)求函数S=f(x)的值域.

【答案】(1)

(2)值域为

【解析】

(1)分三类情况讨论,0<x≤2, 2<x≤4, 4<x≤6,分别求出S,再把S表示成分段函数的形式进而画出函数的图象;

(2)结合图象得到函数的值域.

(1)①当点P在线段BC上运动时,点P到AB的距离为x,则y=×4×x=2x(0<x<4),其函数图象为过原点的一线段;

点P在边CD上时,点P到AB的距离不变,为4,则y=×4×4=8(4≤x≤8),其函数图象是平行于x轴的一线段;

点P在边DA上时,点P到AB的距离为(12﹣x),则y=×4×(12﹣x)=24﹣2x(8<x<12),其图象是一线段.

其定义域为:(0,12)

其图象为:

(2)结合图象可知,函数S=f(x)的值域值域为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

算得,

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 =
(1)求证: + =
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin2x的图象,只需把函数y=sin(2x﹣ )的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 中, 所对的边分别为,且.

(1)求角的大小;

(2)若 的中点,求的长.

【答案】(1);(2).

【解析】试题分析:(1)由已知,利用正弦定理可得a2b2c22b再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
2ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,ABD中,由余弦定理求得BD的值.

试题解析:

(1)因为asin A(bc)sin B(cb)·sin C

由正弦定理得a2(bc)b(cb)c

整理得a2b2c22bc

由余弦定理得cos A

因为A∈(0π)所以A.

(2)cos Bsin B

所以cos Ccos[π(AB)]=-cos(AB)=-=-

由正弦定理得b2

所以CDAC1

BCD由余弦定理得BD2()2122×1××13

所以BD.

型】解答
束】
21

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,证明: 为偶函数;

(2)若上单调递增,求实数的取值范围;

(3)若,求实数的取值范围,使上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数给出下列四个命题:

①c = 0时,是奇函数;时,方程只有一个实根;

的图象关于点(0 , c)对称; ④方程至多3个实根.

其中正确的命题个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在海岸A处,发现南偏东45°方向距A(2-2)海里的B处有一艘走私船,在A处正北方向,距A海里的C处的缉私船立即奉命以10海里/时的速度追截走私船.

(1)刚发现走私船时,求两船的距离;

(2)若走私船正以10海里/时的速度从B处向南偏东75°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(精确到分钟,参考数据:≈1.4,≈2.5).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求使下列函数取得最大值、最小值的自变量x的集合,并分别写出最大值、最小值:

(1)y=3-2sin x

(2)y=sin.

查看答案和解析>>

同步练习册答案