精英家教网 > 高中数学 > 题目详情
下列命题中正确的有( )
①若向量a与b满足a•b<0,则a与b所成角为钝角;
②若向量a与b不共线,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),则m∥n的充要条件是λ1•μ22•μ1=0;
③若,且,则△ABC是等边三角形;
④若a与b非零向量,a⊥b,则|a+b|=|a-b|.
A.②③④
B.①②③
C.①④
D.②
【答案】分析:通过a与b所成角为180°时a•b<0,但180°不是钝角,排除BC
若a与b非零向量且a⊥b时,|a+b|==
|a-b|==,∴|a+b|=|a-b|.排除D.
解答:解:①a与b所成角为180°时a•b<0,但180°不是钝角,故①不对,排除BC
若a与b非零向量且a⊥b时,|a+b|==
|a-b|==,∴|a+b|=|a-b|.成立,排除D.
故选A.
点评:本题主要考查向量的数量积的性质和利用数量积的运算求模的问题.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中正确的有
 
.(填写所有正确命题的序号)
①在△ABC中,若A>B,则sinA>sinB;
②若△ABC为锐角三角形,则sinA>cosB;
③若数列{an}为等差数列,则数列an+2an+1仍为等差数列;
④若数列{an}为等比数列,则数列an+2an+1仍为等比数列;
⑤当x∈(0,
π
2
]
时,y=sinx+
2
sinx
的最小值是2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的有
 
.(填上所有正确命题的序号)
①若f(x)可导且f'(x0)=0,则x0是f(x)的极值点;
②函数f(x)=xe-x,x∈[2,4]的最大值为2e-2
③已知函数f(x)=
-x2+2x
,则_1f(x)dx的值为
π
4

④一质点在直线上以速度v=t2-4t+3(m/s)运动,从时刻t=0(s)到t=4(s)时质点运动的路程为
4
3
(m)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m、n为两条不同直线,α、β为两个不重合的平面,给出下列命题中正确的有(  )
m⊥α
m⊥n
⇒n∥α

m⊥β
n⊥β
⇒m∥n

m⊥α
m⊥β
⇒α∥β

m?α
n?α
α∥β
⇒m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的有
(3)(5)
(3)(5)
(填正确命题的序号).
(1)空集是任意集合的真子集;
(2)若f(1)+f(-1)=0,则函数f(x)是奇函数;
(3)函数y=(
1
2
)-x
 的反函数为y=log2x;
(4)函数y=f(x)是区间(a,b)上的增函数,则函数y=2012f(x)-
2012
f(x)
也是区间(a,b) 上的增函数;
(5)若函数f (x)满足f(-x)=f(x),且当x∈[0,+∞)时f(x)=x2+2x-2,则关于x不等式f(x-1)<1的解集为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的有
③④
③④
.(填上所有正确命题的序号)
①若f'(x0)=0,则函数y=f(x)在x=x0取得极值;
②若∫abf(x)dx>0,则f(x)>0在[a,b]上恒成立;
③已知函数f(x)=
-x2+2x
,则∫01f(x)dx的值为
π
4

④一质点在直线上以速度v=t2-4t+3(m/s)运动,从时刻t=0(s)到t=4(s)时质点运动的位移为
4
3
(m)

查看答案和解析>>

同步练习册答案