精英家教网 > 高中数学 > 题目详情

设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….

(1)求a1,a2

(2)猜想数列{Sn}的通项公式,并给出严格的证明.

 

【答案】

(1) a1. a2 

(2)猜想Sn,n=1,2,3,….

【解析】(1)先令n=1,则s1-1即a1-1是方程的一个根,因而建立关于a1的方程求出a1的值.同理再利用n=2时,求出a2.

(2)由条件可知(Sn-1)2-an(Sn-1)-an=0,化简得S-2Sn+1-anSn=0,

然后利用n≥2时,an=Sn-Sn-1,把an代入上式,消去an,就找到了sn与sn-1之间的递推关系,求出s1,s2,s3,然后观察规律,归纳出sn,再利用数学归纳法证明即可

(1)当n=1时,x2-a1x-a1=0有一根为S1-1=a1-1,于是(a1-1)2-a1(a1-1)-a1=0,解得a1. 当n=2时,x2-a2x-a2=0有一根为S2-1=a2, 于是(a2)2-a2(a2)-a2=0,解得a2 

(2)由题设(Sn-1)2-an(Sn-1)-an=0,S-2Sn+1-anSn=0.当n≥2时,an=Sn-Sn-1

代入上式得Sn-1Sn-2Sn+1=0.①由(1)得S1=a1,S2=a1+a2.

由①可得S3.由此猜想Sn,n=1,2,3,….

下面用数学归纳法证明这个结论.

(i)n=1时已知结论成立.

(ii)假设n=k时结论成立,即Sk,当n=k+1时,由①得Sk+1,即Sk+1,故n=k+1时结论也成立.

综上,由(i)、(ii)可知Sn对所有正整数n都成立.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案