精英家教网 > 高中数学 > 题目详情

【题目】已知函数. 

(Ⅰ)若在定义域与内单调递增,求实数的值;

(Ⅱ)若的极小值大于0,求实数的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析: (Ⅰ)由已知求出的两根,,则在 之间存在一个区间,使得,不满足题意,因此,即可求得.(Ⅱ)比较 的大小关系以及和区间端点的大小关系,分类讨论函数的单调性并求出极小值,令极小值大于0,即可求出实数的取值范围.

试题解析:(Ⅰ)依题意可知,令,可得

,则在 之间存在一个区间,使得,不满足题意.

因此,即

(Ⅱ)当时,若,则上小于0,在上大于0,

,则上小于0,在上大于0,

因此是极小值点, ,解得

时, 上小于0,在上大于0,

因此是极小值点, ,解得

时, 没有极小值点,不符合题意.

综上可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏。将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随即从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

注:其中.

(Ⅱ)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1= an+t,a1= (t为常数,且t≠ ).
(1)证明:{an﹣2t}为等比数列;
(2)当t=﹣ 时,求数列{an}的前几项和最大?
(3)当t=0时,设cn=4an+1,数列{cn}的前n项和为Tn , 若不等式 ≥2n﹣7对任意的n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(14分)一根直木棍长为6m,现将其锯为2段.

(1)若两段木棍的长度均为正整数,求恰有一段长度为2m的概率;

(2)求锯成的两段木棍的长度均大于2m的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程,其左焦点、上顶点和左顶点分别为 ,坐标原点为,且线段 的长度成等差数列.

(Ⅰ)求椭圆的离心率;

(Ⅱ)若过点的一条直线交椭圆于点 ,交轴于点,使得线段被点 三等分,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知2acosB=2c﹣b,若O是△ABC外接圆的圆心,且 ,则m=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,是等比数列,且,则下列结论正确的是( )

A. B.

C. D. ,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 的单调递减区间为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆上有四个不同的点到直线的距离为2,则的取值范围是(  )

A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)

查看答案和解析>>

同步练习册答案