精英家教网 > 高中数学 > 题目详情
19.已知函数y=f(x)是奇函数,根据y=f(x)在[0,5]上的图象作出y=f(x)在[-5,0)上的图象.

分析 利用函数的奇偶性,写出函数的图象即可.

解答 解:函数y=f(x)是奇函数,函数的图象关于原点对称,根据y=f(x)在[0,5]上的图象直接作出y=f(x)在[-5,0)上的图象.如图:

点评 本题考查函数的图象的画法,函数的奇偶性的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知命题p:π是有理数,命题q:x2-3x+2<0的解集是(1,2).给出下列结论:
(1)命题p∧q是真命题         
(2)命题p∧(¬q)是假命题
(3)命题(¬p)∨q是真命题     
(4)命题(¬p)∨(¬q)是假命题
其中正确的是(  )
A.(1)(3)B.(2)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.己知函数f(x)满足f(1)=$\frac{1}{4}$,对任意x,y∈R都有4f(x)f(y)=f(x+y)+f(x-y),则f(2017)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=x+$\frac{a}{x}$有如下性质,如果常数a>0,那么该函数在(0,$\sqrt{a}$)上是减函数,在($\sqrt{a}$,+∞)上的增函数.
(1)试结合函数的性质直接画出函数y=x+$\frac{1}{x}$图象的简图(不必列表描点);
(2)如果函数y=x+$\frac{{2}^{b}}{x}$(x>0)在(0,4]上是减函数,在[4,+∞)是增函数,求b的值;
(3)设常数c∈(1,4),求函数f(x)=x+$\frac{c}{x}$(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.化简:(2$\frac{1}{4}$)0.5+(0.1)-1-(2$\sqrt{2}$)${\;}^{-\frac{2}{3}}$-($\sqrt{3}$-1)0=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(cosC,sin$\frac{C}{2}$),向量$\overrightarrow{n}$=(sin$\frac{C}{2}$,cosC),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)求角C的大小;
(2)若a2=2b2+c2,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若对任意的x∈[0,1],不等式1-ax≤$\frac{1}{\sqrt{x+1}}$≤1-bx恒成立,则a的最小值为$\frac{1}{2}$,b的最大值为1-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线的中心在原点.焦点F1、F2在坐标轴上,一条渐近线方程为y=x.且过点N(2$\sqrt{5}$,4).
(1)求双曲线的方程;
(2)若点N在此双曲线上,且∠F1NF2=60°,求△F1NF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若f(x)=cosx(sinx+1)+ln2,则f′(x)=cos2x-sinx.

查看答案和解析>>

同步练习册答案