精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知任意角以坐标原点为顶点,轴的非负半轴为始边,若终边经过点,且,定义:,称“”为“正余弦函数”,对于“正余弦函数”,有同学得到以下性质:

①该函数的值域为; ②该函数的图象关于原点对称;

③该函数的图象关于直线对称; ④该函数为周期函数,且最小正周期为

⑤该函数的递增区间为.

其中正确的是__________.(填上所有正确性质的序号)

【答案】①④⑤.

【解析】分析:根据“正余弦函数”的定义得到函数,然后根据三角函数的图象与性质分别进行判断即可得到结论

详解:①中,由三角函数的定义可知

所以,所以是正确的;

②中,,所以,所以函数关于原点对称是错位的;

③中,当时,,所以图象关于对称是错误的;

④中,,所以函数为周期函数,且最小正周期为,所以是正确的;

⑤中,因为,令

,即函数的单调递增区间为,所以是正确的,

综上所述,正确命题的序号为①④⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆过圆与直线的交点,且圆上任意一点关于直线 的对称点仍在圆上.

(1)求圆的标准方程;

(2)若圆轴正半轴的交点为,直线与圆交于两点(异于点),且点满足,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:(1)已知向量 是空间的一组基底,则向量 也是空间的一组基底;(2) 在正方体 中,若点 内,且 ,则 的值为1;(3) 圆 上到直线 的距离等于1的点有2个;(4)方程 表示的曲线是一条直线.其中正确命题的序号是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种产品,每生产1吨产品需人工费4万元,每天还需固定成本3万元.经过长期调查统计,每日的销售额(单位:万元)与日产量(单位:吨)满足函数关系,已知每天生产4吨时利润为7万元.

(1)求的值;

(2)当日产量为多少吨时,每天的利润最大,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 均为等边三角形, .

(Ⅰ)求证: 平面
(Ⅱ)求直线 与平面 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为 ,上顶点为 周长为 ,离心率为 .
(1)求椭圆 的方程;
(2)若点 是椭圆 上第一象限内的一个点,直线 过点 且与直线 平行,直线 与椭圆 交于 两点,与 交于点 ,是否存在常数 ,使 .若存在,求出 的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;

(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组的对应数据:

据此计算出的回归方程为.

(i)求参数的估计值;

(ii)若把回归方程当作的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,已知A为钝角,且2a ,若 ,则△ABC的面积的最大值为 .

查看答案和解析>>

同步练习册答案