精英家教网 > 高中数学 > 题目详情
1.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=2相切,则以a,b,c为三边长的三角形(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不存在

分析 由题意可得,圆心到直线的距离$\frac{|c|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{2}$,即 c2=2a2+2b2,故可得结论.

解答 解:∵直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=2相切,
∴圆心到直线的距离 $\frac{|c|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{2}$,即 c2=2a2+2b2
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$≤-1
故以a,b,c为三边长的三角形不存在,
故选D.

点评 本题考查直线和圆的位置关系,点到直线的距离公式,得到圆心到直线的距离$\frac{|c|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{2}$,即c2=2a2+2b2是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$
(1)求目标函数z=3x-y的最大值;
(2)若目标函数z=ax+by(a>0,b>0)的最大值为6,求$\frac{1}{a}+\frac{4}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2-$\frac{3}{x}$在区间[1,3]上的最大值是(  )
A.2B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于点F,则$\frac{EF}{FC}+\frac{AF}{FD}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若“$?x∈[{0,\frac{π}{3}}],m≥2tanx$”是真命题,则实数m的最小值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的程序框图,如果输出的是30,那么判断框中应填写(  )
A.i>3?B.i≤5?C.i<4?D.i≤4?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=ax+2-2的图象过的定点在函数y=-$\frac{n}{m}$x-$\frac{1}{m}$的图象上,其中m,n为正数,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,二等奖券3张,其余6张没有奖,某顾客从此10张券中任抽2张,
(1)求该顾客中奖的概率;
(2)设随机变量X为顾客抽的中奖券的张数,求X的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在棱长均相等的正三棱柱ABC-A1B1C1中,M,N,D分别是棱B1C1,C1C,BC的中点.
(Ⅰ)求证:A1M∥平面AB1D;
(Ⅱ)求证:BN⊥平面A1MC.

查看答案和解析>>

同步练习册答案