精英家教网 > 高中数学 > 题目详情
20.执行如图所示的程序框图,则输出s的值为(  )
A.$\frac{25}{24}$B.$\frac{11}{12}$C.$\frac{5}{6}$D.$\frac{3}{4}$

分析 根据已知的框图,可知程序的功能是利用循环累加循环变量$\frac{1}{k}$的值到累加变量S,并在循环变量k值大于等于8时,输出累加结果.

解答 解:模拟执行程序框图,可得
s=0,k=0
满足条件k<8,k=2,s=$\frac{1}{2}$,
满足条件k<8,k=4,s=$\frac{1}{2}$+$\frac{1}{4}$,
满足条件k<8,k=6,s=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$,
满足条件k<8,k=8,s=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$=$\frac{25}{24}$,
不满足条件k<8,退出循环,输出s的值为$\frac{25}{24}$.
故选:A.

点评 本题考查的知识点是程序框图,当程序的运行次数不多时,我们多采用模拟程序运行的方法得到程序的运行结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知过原点的直线l与曲线C:$\frac{{x}^{2}}{3}$+y2=1相交,直线l被曲线C所截得的线段长等于$\sqrt{6}$,则直线l的斜率k的-个取值是 (  )
A.$\frac{\sqrt{3}}{3}$B.$-\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义对于任意两个集合M、N的运算:M?N={x|x∈M,x∈N,x∉M∩N}.设集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},则A?B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角$(α+\frac{π}{3})$的终边经过点$P(2,\;4\sqrt{3})$,则tanα=$\frac{{\sqrt{3}}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=ax3+bx-5,其中a,b为常数,若f(-3)=7,则f(3)=-17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A={x|x+2≤0或x-3≥0},B={x|2a-1≤x≤a+2},若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x-2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex-$\frac{1}{x}$,设a=f(-5),b=f($\frac{19}{2}$),c=f($\frac{41}{4}$),则a,b,c的大小关系是(  )
A.b<a<cB.c<a<bC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某人射击一次命中目标的概率为$\frac{1}{2}$,则此人射击6次,3次命中且恰有2次连续命中的概率为(  )
A.C${\;}_{6}^{3}$($\frac{1}{2}$)6B.A${\;}_{4}^{2}$($\frac{1}{2}$)6C.C${\;}_{4}^{2}$($\frac{1}{2}$)6D.C${\;}_{4}^{1}$($\frac{1}{2}$)6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{b-{2}^{x}}{a+{2}^{x+1}}$是定义在R上的奇函数.
(1)求f(x)的解析式.
(2)若不等式f(t2-2t)+f(2t2-k)≤0对$t∈[{\frac{1}{4},+∞})$恒成立,求k的最大值.
(3)证明:对任意x,c∈R,不等式f(x)<c2-3c+3恒成立.

查看答案和解析>>

同步练习册答案