精英家教网 > 高中数学 > 题目详情
16.已知函数y=f(x2-1)的定义域为[-$\sqrt{3}$,$\sqrt{3}$],则函数y=f(x)的定义域是[-1,2].

分析 根据复合函数定义域之间的关系进行求解即可.

解答 解:∵函数y=f(x2-1)的定义域为[-$\sqrt{3}$,$\sqrt{3}$],
∴-$\sqrt{3}$≤x≤$\sqrt{3}$,
即0≤x2≤3,
-1≤x2-1≤2,
即函数y=f(x)的定义域为[-1,2],
故答案为:[-1,2]

点评 本题主要考查函数的定义域的求解,要求熟练掌握复合函数定义域之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到右焦点F的最小距离是$\sqrt{2}$-1,F到上顶点的距离为$\sqrt{2}$,点C(m,0)是线段OF上的一个动点(不包括端点).
(1)求椭圆的方程;
(2)是否存在过点F且与x轴不垂直的直线l,使得直线l与椭圆交于A、B两点且△ABC为等腰三角形?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的值域:
(1)y=sinx,x∈[$\frac{π}{4}$,$\frac{5π}{4}$];
(2)y=cos(x-$\frac{π}{3}$),x∈[$\frac{π}{2}$,$\frac{3π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.证明:logab•logbc•logca=1(a>0,b>0,c>0,a≠1,b≠1,c≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}为各项都是正数的等比数列,且a2,$\frac{1}{2}$a3,2a1成等差数列,则公比的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(2x-3)=4x2-6x+8,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下面列举的图形一定是平面图形的是(  )
A.有一个角是直角的四边形B.有两个角是直角的四边形
C.有三个角是直角的四边形D.有四个角是直角的四边形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆柱的底面半径为1,体积为2π,则这个圆柱的表面积是6π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,正方体ABCD-A1B1C1D1的棱长为1,M是AB的中点,求D1M与面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案