精英家教网 > 高中数学 > 题目详情
(2013•贵阳二模)如图,在三棱柱ADF-BCE中,侧棱AB底面ADF,底面ADF是等腰直角三角形,且AD=DF=a,AB=2a,G是线段DF的中点,M是线段AB上一点.
(I)若M是线段AB的中点,求证:GA∥平面FMC
(II)若多面体BCDMFE的体积是多面体F-ADM的体积的3倍,AM=λMB,求λ的值.
分析:(I)方法一(面面平行性质法):取DC中点S,连接AS,GS,GA,由三角形中位定理可得GS∥FC,AS∥CM,进而由面面平行的第二判定定理可得面GSA∥面FMC,最后由面面平行的性质,得到答案.
方法二:(线面平行的判定定理法):取FC中点N,连接GN,MN,由三角形中位线定理及平行四边形判定定理,可得AMNG是平行四边形,进而AG∥MN,最后由线面平行的判定定理得到答案.
(II)设三棱柱ADF-BCE的体积为V,多面体F-ADM与多面体DMFEBC的体积分别是V1,V2,AM=x,由多面体BCDMFE的体积是多面体F-ADM的体积的3倍,可求出x与a的关系,进而得到λ值.
解答:证明:(I)
方法一(面面平行性质法):
取DC中点S,连接AS,GS,GA
∵G是DF的中点,GS∥FC,AS∥CM
∵GS∩AS=S,GS,AS?面GSA,FC,CM?面FMC
∴面GSA∥面FMC,
而GA?平面GSA,
∴GA∥平面FMC…(6分)
方法二:(线面平行的判定定理法)
取FC中点N,连接GN,MN
∵G是DF中点
∴GF∥CD且GN=
1
2
CD

又∵AM∥CD且AM=
1
2
CD

∴AM∥GN且AM=GN
∴AMNG是平行四边形
∴AG∥MN又
∵MN?平面FCM,AG?平面FMC
∴AG∥平面FMC…(6分)
(II)设三棱柱ADF-BCE的体积为V,多面体F-ADM与多面体DMFEBC的体积分别是V1,V2,AM=x.
由题意得,V=(
1
2
DA•DF)•AB=(
1
2
a•a)•2a=a3

V1=VM-ADF=
1
3
(
1
2
DA•DF)•x=
1
6
a2x

V2=V-V1=a3-
1
6
a2x
.…(9分)
因为V2=3V1
所以a3-
1
6
a2x=3•
1
6
a2x
,解得x=
3
2
a

所以λ=
AM
BM
=
3
2
a
2a-
3
2
a
=3
.…(12分)
点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,其中(I)的关键是熟练线面平行的证明方法和步骤,(II)的关键是由多面体BCDMFE的体积是多面体F-ADM的体积的3倍,求出x与a的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•贵阳二模)已知函数f(x)=(bx+c)lnx在x=
1
e
处取得极值,且在x=1处的切线的斜率为1.
(Ⅰ)求b,c的值及f(x)的单调减区间;
(Ⅱ)设p>0,q>0,g(x)=f(x)+x2,求证:5g(
3p+2q
5
)≤3g(p)+2g(q).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•贵阳二模)已知等差数列{an}的前n项和为Sn,且满足:a2+a4=14,S7=70.
(Ⅰ)求数列an的通项公式;
(Ⅱ)设bn=
2Sn+48n
,数列bn的最小项是第几项,并求出该项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•贵阳二模)已知集合A={x∈R|x2≤4},B={x∈N|
x
≤3},则A∩B(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•贵阳二模)已知i是虚数单位,m和n都是实数,且m(1+i)=5+ni,则
m+ni
m-ni
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•贵阳二模)若x∈﹙10-1,1﹚,a=lgx,b=2lgx.c=lg3x.则(  )

查看答案和解析>>

同步练习册答案