精英家教网 > 高中数学 > 题目详情

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

【答案】1,切线方程为2.

【解析】

试题解析:本题考查求复合函数的导数,导数与函数的关系,由求导法则可得,由已知得,可得,于是有,由点斜式可得切线方程;2由题意上恒成立,即上恒成立,利用二次函数的性质可很快得结论,由

试题析:1求导得

因为处取得极值,所以,即.

时,,故,从而在点处的切线方程为,化简得

21得,,

,解得.

时,,故为减函数;

时,,故为增函数;

时,,故为减函数;

上为减函数,知,解得

故a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA平面ABC,AB=2,AF=2,BD=1,CE=3,O为BC的中点.

(1)求证:面EFD面BCED;

(2)求平面DEF与平面ACEF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足且当若对任意的不等式恒成立则实数的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的最小正周期;

(2)常数,若函数在区间上是增函数,求的取值范围;

(3)若函数的最大值为2,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数yf(x)的导函数yf′(x)的图象则下面判断正确的是(   )

A. (21)f(x)是增函数 B. (13)f(x)是减函数

C. x2f(x)取极大值 D. x4f(x)取极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期

121

122

123

124

125

温差x()

10

11

13

12

8

发芽数y()

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再对被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2天数据的概率;

(2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求y关于x的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(附:对于一组数据(x1y1),(x2y2),…,(xnyn),其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有1个红球和2个白球,这3个球除颜色外完全相同,有放回地连续抽取2次,每次从中任意抽取出1个球,则:

(1)第一次取出白球,第二次取出红球的概率;

(2)取出的2个球是11白的概率;

(3)取出的2个球中至少有1个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足,求:

(1)的最小值;

(2)的范围;

(3)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为的交点,的中点.

(I)求证:直线平面

(II)求证:平面

(III)二面角的余弦值.

查看答案和解析>>

同步练习册答案