精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$.
(1)证明:函数F(x)=[f(x)]2-[g(x)]2是常数函数;
(2)判断G(x)=$\frac{g(x)}{f(x)}$的奇偶性并证明.

分析 (1)根据题意和平方差公式化简函数F(x)即可;
(2)先求出G(x)的解析式,再化简G(-x)并判断出与G(x)的关系,可得函数G(x)的奇偶性.

解答 证明:(1)由题意得,f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,
所以F(x)=[f(x)]2-[g(x)]2=[f(x)-g(x)][f(x)+g(x)]
=e-x•ex=1,
所以函数F(x)=[f(x)]2-[g(x)]2是常数函数;
(2)函数G(x)是奇函数,证明如下:
由题意得,G(x)=$\frac{g(x)}{f(x)}$=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$,
则G(-x)=$\frac{{e}^{-x}-{e}^{x}}{{e}^{-x}+{e}^{x}}$=-G(x),
所以函数G(x)是奇函数.

点评 本题考查指数型的函数奇偶性,以及函数的化简、证明,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2cos$\frac{ωx}{2}$($\sqrt{3}$cos$\frac{ωx}{2}$-sin$\frac{ωx}{x}$)(ω>0)的最小正周期为2π.
(1)求函数f(x)的表达式;
(2)设θ∈(0,$\frac{π}{2}$),且f(θ)=$\sqrt{3}$+$\frac{6}{5}$,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(Ⅰ)给定线段AB=4,用斜二测画法作正方体ABCD-A1B1C1D1
(Ⅱ)设P是棱A1B1上一点,$P{B_1}=\frac{1}{4}{A_1}{B_1}$,求多面体P-BCC1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x2-2ax+5在[4,+∞)上为增函数,则实数a取值范围是(  )
A.a≥-4B.a=4C.a≤4D.a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{{p{x^2}+1}}{x}$的图象经过点$({2,\frac{5}{2}})$,.
(1)求函数f(x)的解析式;
(2)写出函数f(x)的定义域,并判断其奇偶性;
(3)当t>$\frac{1}{2}$时,求函数f(x)在区间$[{\frac{1}{2},t}]$上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式$\sqrt{-{x}^{2}-4x-3}$≤x+2-m,对[-3,-1]恒成立,则实数m的取值范围是m$≤-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,演出顺序的排列共有多少种?
(2)求${(\frac{1}{x}-\sqrt{x})^6}$的展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知奇函数f(x)=$\left\{\begin{array}{l}{g(x),x<0}\\{ln(x+1)+a,x≥0}\end{array}\right.$,则g(-2)的值为-ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinx+cosx=$\frac{1-\sqrt{3}}{2}$,且0<x<π,求下列各式的值:
(1)sin4x+cos4x; 
(2)tanx.

查看答案和解析>>

同步练习册答案