精英家教网 > 高中数学 > 题目详情

已知P为抛物线y2=4x上一个动点,直线l1:x=-1,l2:x+y+3=0,则P到直线l1、l2的距离之和的最小值为


  1. A.
    2数学公式
  2. B.
    4
  3. C.
    数学公式
  4. D.
    数学公式+1
A
分析:将P点到直线l1:x=-1的距离转化为P到焦点F(1,0)的距离,过点F作直线l2垂线,交抛物线于点P,此即为所求最小值点,由此能求出P到两直线的距离之和的最小值.
解答:将P点到直线l1:x=-1的距离转化为P到焦点F(1,0)的距离,
过点F作直线l2垂线,
交抛物线于点P,
此即为所求最小值点,
∴P到两直线的距离之和的最小值为=2
故选A.
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是(  )
A、2
5
-1
B、2
5
-2
C、
17
-1
D、
17
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4(x-1)上动点,PA⊥y轴交y于A,点B在y轴上,且B点分向量
OA
的比为1:2,求BP中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x的焦点,过P的直线l与抛物线交与A、B两点,若点Q在直线l上,且满足AP•QB=AQ•PB,则点Q总在定直线x=-1上.试猜测如果点P为椭圆
x2
16
+
y2
9
=1
的左焦点,过P的直线l与椭圆交与A、B两点,点Q在直线l上,且满足AP•QB=AQ•PB,则点Q总在定直线
x=-
16
7
7
x=-
16
7
7
上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是
17
-1
17
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=2x上任一点,则P到直线x-y+5=0距离的最小值为
 

查看答案和解析>>

同步练习册答案