精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数).

(1)讨论函数的单调性;

(2)当时,恒成立,求整数的最大值.

【答案】(1)见解析;(2) 的最大值为1.

【解析】

1)根据的不同范围,判断导函数的符号,从而得到的单调性;(2)方法一:构造新函数,通过讨论的范围,判断单调性,从而确定结果;方法二:利用分离变量法,把问题变为,求解函数最小值得到结果.

(1)

时, 上递增;

时,令,解得:

上递减,在上递增;

时, 上递减

(2)由题意得:

对于恒成立

方法一、令,则

时, 上递增,且,符合题意;

时, 时,单调递增

则存在,使得,且上递减,在上递增

得:

整数的最大值为

另一方面,时,

时成立

方法二、原不等式等价于:恒成立

,则

上递增,又

存在,使得

上递减,在上递增

,整数的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐.下表是西南地区某大学近五年的录取平均分与省一本线对比表:

年份

年份代码

省一本线

录取平均分

录取平均分与省一本线分差

(1)根据上表数据可知,之间存在线性相关关系,求关于的性回归方程;

(2)假设2019年该省一本线为分,利用(1)中求出的回归方程预测2019年该大学录取平均分.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某煤炭公司销售人员根据该公司以往的销售情况,得到如下频率分布表

日销售量分组

[2,4)

[4,6)

[6,8)

[8,10)

[10,12]

频率

0.10

0.20

0.30

0.25

0.15

(1)在下图中作出这些数据的频率分布直方图;

(2)将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.若未来3天内日销售量不低于6吨的天数为X,求X的分布列、数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为,且各个水果是否为不合格品相互独立.

(Ⅰ)记10个水果中恰有2个不合格品的概率为,求取最大值时p的值

(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的作为p的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用

(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;

(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,a、b、c分别是角A、B、C的对边,向量=(2sinB,2-cos2B),=(2sin2( ),-1),.

(1)求角B的大小;

(2)若a= ,b=1,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一定点,及一定直线,以动点为圆心的圆过点,且与直线相切

(Ⅰ)求动点的轨迹的方程

(Ⅱ)设在直线上,直线分别与曲线相切于为线段的中点求证:且直线恒过定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面ABCD为菱形,QAD的中点.

,求证:平面PQB平面PAD

若平面APD平面ABCD,且M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的离心率为,过其右焦点作斜率为的直线,交双曲线的两条渐近线于两点(点在轴上方),则( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:

①骑自行车者比骑摩托车者早出发3 h,晚到1 h

②骑自行车者是变速运动,骑摩托车者是匀速运动;

③骑摩托车者在出发1.5 h后追上了骑自行车者;

④骑摩托车者在出发1.5 h后与骑自行车者速度一样.

其中,正确信息的序号是________

查看答案和解析>>

同步练习册答案