精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数上是增函数,且在定义域上是偶函数.

1)求p的值,并写出相应的函数的解析式.

2)对于(1)中求得的函数,设函数,问是否存在实数,使得在区间上是减函数,且在区间上是增函数?若存在,请求出q;若不存在,请说明理由.

【答案】1)当时,;当时,;(2)存在,.

【解析】

1)由幂函数的单调性确定参数的可能取值,再由偶函数的性质确定的值.

2)把作为一个整体,时,时,.结合二次函数的单调性可得值.

1)由于已知上是增函数,因而,解得.

,因而12.

时,,不是偶函数;

时,,符合题意.

2)存在.理由如下:

由(1)知.

由于,因而当时,

此时,函数单调递减,而函数上单调递减,

则外层函数上单调递增;

时,

此时,函数单调递增,而函数上单调递减,

则外层函数上单调递减.

所以,即.

所以存在满足题设条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合

1)命题p,都有,若命题p为真命题,求a的值;

2)若的必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:

①从中任取3球,恰有一个白球的概率是

②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为

③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为

④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.

其中所有正确结论的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理: “幂势既同,则积不容异”.意思是:夹在两个乎行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现将曲线轴旋转一周得到的几何体叫做椭球体,记为,几何体的三视图如图所示.根据祖暅原理通过考察可以得到的体积,则的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是

A. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关

B. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关

C. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关

D. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有

A. 24种B. 30种C. 32种D. 36种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某野生动物保护区内某种野生动物的数量,调查人员某天逮到这种动物1200只作好标记后放回,经过一星期后,又逮到这种动物1000只,其中作过标记的有100只,按概率的方法估算,保护区内有多少只该种动物.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)若对于任意,都有成立,求实数的取值范围;

(3)若,且,证明:.

查看答案和解析>>

同步练习册答案