精英家教网 > 高中数学 > 题目详情
在面积为S的边AB上任取一点P,求△PBC的面积大于
S3
的概率.
分析:首先分析题目求在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于
S
3
的概率,可借助于画图求解的方法,然后根据图形分析出基本的事件空间与事件的几何度量是什么.再根据几何关系求解出它们的比例即可.
解答:解:记事件A={△PBC的面积大于
S
3
},
基本事件空间是线段AB的长度,(如图)
因为 S△PBC
S
3
,则有
1
2
BC•PE≥
1
3
×
1
2
BC•AD

化简记得到:
PE
AD
1
3

因为PE平行AD则由三角形的相似性
BP
AB
1
3

所以,事件A的几何度量为线段AP的长度,
因为AP=
2
3
AB

所以P(A)=
AP
AB
=
2
3

故△PBC的面积大于
S
3
的概率为
2
3
点评:解决有关几何概型的问题的关键是认清基本事件空间是指面积还是长度或体积,并且熟练记忆有关的概率公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宁德模拟)在面积为S的正三角形ABC中,E是边AB上的动点,过点E作EF∥BC,交AC于点F,当点E运动到离边BC的距离为△ABC高的
1
2
时,△EFB的面积取得最大值为
1
4
S
.类比上面的结论,可得,在各棱条相等的体积为V的四面体ABCD中,E是棱AB上的动点,过点E作平面EFG∥平面BCD,分别交AC、AD于点F、G,则四面体EFGB的体积的最大值等于
4
27
4
27
V.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明一中高二(上)第二次月考数学试卷(理科)(解析版) 题型:填空题

在面积为S的正三角形ABC中,E是边AB上的动点,过点E作EF∥BC,交AC于点F,当点E运动到离边BC的距离为△ABC高的时,△EFB的面积取得最大值为.类比上面的结论,可得,在各棱条相等的体积为V的四面体ABCD中,E是棱AB上的动点,过点E作平面EFG∥平面BCD,分别交AC、AD于点F、G,则四面体EFGB的体积的最大值等于    V.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市张家港外国语学校高二(上)周日数学试卷5(理科)(解析版) 题型:填空题

在面积为S的正三角形ABC中,E是边AB上的动点,过点E作EF∥BC,交AC于点F,当点E运动到离边BC的距离为△ABC高的时,△EFB的面积取得最大值为.类比上面的结论,可得,在各棱条相等的体积为V的四面体ABCD中,E是棱AB上的动点,过点E作平面EFG∥平面BCD,分别交AC、AD于点F、G,则四面体EFGB的体积的最大值等于    V.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明一中高二(上)第二次月考数学试卷(理科)(解析版) 题型:填空题

在面积为S的正三角形ABC中,E是边AB上的动点,过点E作EF∥BC,交AC于点F,当点E运动到离边BC的距离为△ABC高的时,△EFB的面积取得最大值为.类比上面的结论,可得,在各棱条相等的体积为V的四面体ABCD中,E是棱AB上的动点,过点E作平面EFG∥平面BCD,分别交AC、AD于点F、G,则四面体EFGB的体积的最大值等于    V.

查看答案和解析>>

科目:高中数学 来源:2012年福建省宁德市高三毕业班质量检查数学试卷(理科)(解析版) 题型:解答题

在面积为S的正三角形ABC中,E是边AB上的动点,过点E作EF∥BC,交AC于点F,当点E运动到离边BC的距离为△ABC高的时,△EFB的面积取得最大值为.类比上面的结论,可得,在各棱条相等的体积为V的四面体ABCD中,E是棱AB上的动点,过点E作平面EFG∥平面BCD,分别交AC、AD于点F、G,则四面体EFGB的体积的最大值等于    V.

查看答案和解析>>

同步练习册答案