【题目】设△ABC是边长为4的正三角形,点P1 , P2 , P3 , 四等分线段BC(如图所示)
(1)P为边BC上一动点,求 的取值范围?
(2)Q为线段AP1上一点,若 =m + ,求实数m的值.
【答案】
(1)解:以BC所在直线为x轴,AP2所在直线为y轴,
P2为坐标原点,建立直角坐标系,
则A(0,2 ),B(﹣2,0),C(2,0),P1(﹣1,0),
设P(t,0)(﹣2≤t≤2),则 =(﹣t,2 ), =(2﹣t,0),
可得 =﹣t(2﹣t)+2 0=t2﹣2t=(t﹣1)2﹣1,(﹣2≤t≤2),
t=1时,取得最小值﹣1;t=﹣2时,取得最大值8.
则 的取值范围为[﹣1,8]
(2)解:设Q(x,y),由A,Q,P1共线,
可得 = ,
即有y=2 x+2 ,
则 =(x,2 x), =(﹣2,﹣2 ), =(2,﹣2 ),
若 =m + ,
则 ,
解得m= .
【解析】(1)以BC所在直线为x轴,AP2所在直线为y轴,P2为坐标原点,建立直角坐标系,求得A,B,C,P1 , 的坐标,求得向量PA,PC的坐标,运用数量积的坐标表示,再由二次函数在闭区间上的值域求法可得;(2)设Q(x,y),由A,Q,P1共线,运用斜率相等,求得y关于x的式子,再分别求得向量AQ,AB,AC的坐标,得到m,x的方程组,即可解得m的值.
科目:高中数学 来源: 题型:
【题目】已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},则A∪B=( )
A.{0,1,3}
B.{1,2,4}
C.{0,1,2,3}
D.{0,1,2,3,4}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P为△ABC内一点,且满足 ,记△ABP,△BCP,△ACP的面积依次为S1 , S2 , S3 , 则S1:S2:S3等于( )
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上的“中值点”为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com