精英家教网 > 高中数学 > 题目详情
已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.

(1)求证:△AEM ≌△CFN;
(2)求证:四边形BMDN是平行四边形.
(1)根据三角形全等的判定定理可知结论。
(2)结合平行四边形的判定定理可知,只要证明一组对边平行且相等,既可以得到证明。

试题分析:证明:(1)四边形ABCD是平行四边形,
∴∠DAB=∠BCD,
∴∠EAM=∠FCN,     2分
又∵AD∥BC,
∴∠E=∠F.         3分
在△AEM与△CFN中,
∠EAM=∠FCN AE="CF" ∠E=∠F  ,
∴△AEM≌△CFN           5分
(2)∵四边形ABCD是平行四边形,
∴AB ∥= CD,       6分
又由(1)得AM=CN,
∴BM ∥= DN,      8分
∴四边形BMDN是平行四边形.    9分 
点评:解决的关键是利用角相等,和边相等来证明全等,同时利用平行四边形的判定定理,得到证明,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,如图,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E.

(1) 求证:FA∥BE;
(2)求证:;           
(3)若⊙O的直径AB=2,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB、CD是⊙O的两条平行切线,B、D为切点,AC为⊙O的切线,切点为E.过A作AF⊥CD,F为垂足.

(1)求证:四边形ABDF是矩形;
(2)若AB=4,CD=9,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如右图,以半圆的一条弦AN为对称轴将折叠过来和直径MN交于点B,如
果MB:BN=2:3,且MN=10,则弦AN的长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,过点B作⊙O的切线BCOC交⊙O于点EAE的延长线交BC于点D

(1)求证:CE2 = CD · CB
(2)若AB = BC = 2,求CECD的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,PA为0的切线,A为切点,PBC是过点O的割线,PA ="10,PB" =5、

(I)求证:;
(2)求AC的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分10分)
如下图,ABCD是圆的两条平行弦,BE//ACBECDE、交圆于F,过A点的切线交DC的延长线于PPC=ED=1,PA=2.

(I)求AC的长;
(II)求证:BEEF

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图,四边形ACBD内接于圆O,对角线AC与BD相交于M, AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于H,

求证:(1)EF⊥AB         (2)OH=ME

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图3,PAB、PCD为⊙O的两条割线,若 PA=5,AB=7,CD=11,,则BD等于   .

查看答案和解析>>

同步练习册答案