精英家教网 > 高中数学 > 题目详情
15.若函数f(x)=ex-ax2有三个不同零点,则a的取值范围是(  )
A.($\frac{e^2}{4}$,+∞)B.($\frac{{{e^{\;}}}}{2}$,+∞)C.(1,$\frac{e^2}{4}$)D.(1,$\frac{{{e^{\;}}}}{2}$)

分析 可判断a>0,作函数y=ex与y=ax2的图象,从而转化问题为当x>0时,两图象有两个交点,再假设两图象至多有-个交点,则ex≥ax2恒成立,从而可得a≤$\frac{{e}^{2}}{4}$,从而解得.

解答 解:当a≤0时,函数f(x)=ex-ax2>0恒成立,故a>0;
作函数y=ex与y=ax2的图象如图,
由图象可知,当x<0时,两图象必有一个交点,
故当x>0时,两图象有两个交点,
假设两图象至多有-个交点,则ex≥ax2恒成立,
即a≤$\frac{{e}^{x}}{{x}^{2}}$,
记F(x)=$\frac{{e}^{x}}{{x}^{2}}$,F′(x)=$\frac{{e}^{x}(x-2)}{{x}^{3}}$,
故F(x)min=F(2)=$\frac{{e}^{2}}{4}$;
故a≤$\frac{{e}^{2}}{4}$时,两图象至多有-个交点;
故若函数f(x)=ex-ax2有三个不同零点,则a>$\frac{{e}^{2}}{4}$.
故选:A.

点评 本题考查了数形结合的思想应用及导数的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的通项公式为an=n2cosnπ,Sn为它的前n项和,则$\frac{{S}_{2010}}{2011}$=1005.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,且$\overrightarrow a•\overrightarrow b=\sqrt{3}$,则$|\overrightarrow a-\overrightarrow b|$的最小值为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.集合M、N分别是f(x)=$\sqrt{{x}^{2}-4x-5}$和g(x)=log3(-x2+2x+8)的定义域.则(∁RM)∪N=(-2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB=2,PA⊥底面ABCD,E是PC的中点.
(1)证明:直线BE∥平面PAD;
(2)若直线BE⊥平面PCD.
①求PA的长;
②求异面直线PD与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆Cn的半径为rn(n=1,2,3,…),它们均与大小为θ(θ为锐角)的定角∠AOB的两边OA、OB相切,且CnCn+1相切.又rn+1<rn,r1=1,设这些圆的面积依次为S1,S2,…,Sn,…,且$\underset{lim}{n→∞}$(S1+S2+…+Sn)=$\frac{9π}{8}$,则θ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知an=ln(1+$\frac{1}{n}$)(n∈N*),则数列{an}的前n项和为Sn=ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.{an}是等比数列,若a1=2,an=22n-1,求这个数列的前n项和Sn

查看答案和解析>>

同步练习册答案