精英家教网 > 高中数学 > 题目详情
已知在△ABC中,角A、B,C所对边分别为a,b,c,且c=
2
,B=45°,S△ABC=
1
2
,则b=
 
考点:正弦定理
专题:解三角形
分析:利用条件和三角形的面积公式求出边a,再利用三角形的余弦定理求出边b.
解答: 解:由题意得,c=
2
,B=45°,S△ABC=
1
2

所以
1
2
acsinB=
1
2
,解得a=1,
由余弦定理得,b2=a2+c2-2accosB=1+2-2×1×
2
×
2
2
=1,
则b=1,
故答案为:1.
点评:本题考查三角形的面积公式:三角形的面积等于任意两边与它们夹角正弦的一半、考查利用三角形的余弦定理求边长.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:对任意x∈R,总有x2≥0; q:x=2是方程x+3=0的根,则下列命题为真命题的是(  )
A、¬p∧qB、p∧¬q
C、¬p∧¬qD、p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

某船在海面A处测得灯塔C与A相距10
3
海里,且在北偏东30°方向;测得灯塔B与A相距15
6
海里,且在北偏西75°方向.船由A向正北方向航行到D处,测得灯塔B在南偏西60°方向.这时灯塔C与D相距
 
海里.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果圆(x-a)2+(y-a)2=8上总存在到原点的距离为
2
的点,则实数a的取值范围是(  )
A、(-3,-1)∪(1,3)
B、(-3,3)
C、[-1,1]
D、[-3,-1]∪[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是R上周期为3的奇函数,且已知f(1)=2014.则f(2013)+f(2014)+f(2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),其图象是连续不断的,如果存在非零常数λ(λ∈R),使得对任意的x∈R,都有f(x+λ)=λf(x),则称y=f(x)为“倍增函数”,λ为“倍增系数”,下列说法中正确的序号是
 

①若函数y=f(x)是倍增系数λ=-2的“倍增函数”,则y=f(x)至少有1个零点;
②函数f(x)=2x+1是“倍增函数”,且“倍增系数”λ=1;
③函数f(x)=logax(a>0且a≠1)不可能是“倍增函数”;
④函数f(x)=
e
-x
 
是“倍增函数”,且“倍增系数”λ∈(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为0的等差数列{an},满足a72-a3-a11=0,数列{bn}是等比数列,且b7=a7,则b6b8=(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3},B={y|y≥1},则A*B=
 

查看答案和解析>>

同步练习册答案