精英家教网 > 高中数学 > 题目详情
选修4-1几何证明
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC,AE,DE.
求证:∠E=∠C.
分析:要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.
解答:证明:连接 AD.
∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).
∴AD⊥BD(垂直的定义).
又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).
∴AB=AC(线段中垂线上的点到线段两端的距离相等).
∴∠B=∠C(等腰三角形等边对等角的性质).
又∵D,E 为圆上位于AB异侧的两点,
∴∠B=∠E(圆周角定理)
∴∠E=∠C(等量代换)
点评:本题考查的知识点是圆周角定理,等腰三角形的性质,中垂线的性质,熟练掌握证明角相等的常用方法是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-1几何证明选讲)
如图,D,E分别是AB,AC边上的点,且不与顶点重合,已知AE=m,AC=n,AD,AB为方程x2-14x+mn=0的两根
(1)证明:C,B,D,E四点共圆;
(2)若∠A=90°,m=4,n=6,求C,B,D,E四点所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1几何证明选讲
如图,设△ABC的外接圆的切线AE与BC的延长线交于点E,∠BAC的平分线与BC交于点D.
求证:ED2=EC•EB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-1几何证明选讲)
如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F
求证:AB=FC.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π
3
)=4
的距离的最小值是
5
2
5
2

B.(选修4-5不等式选讲)不等式|2x-1|+|2x-3|≥4的解集是
(-∞,0]∪[2,+∞)
(-∞,0]∪[2,+∞)

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
48
5
48
5

查看答案和解析>>

同步练习册答案