【题目】已知函数.
(1)确定函数在定义域上的单调性,并写出详细过程;
(2)若在上恒成立,求实数的取值范围.
【答案】(1)答案见解析;(2) .
【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调性(2)调整不等式为在上恒成立.再利用导数研究函数单调性:当时,函数单调递增,最大值趋于正无穷 ,不符题意;当时,函数先增再减,最大值为,满足题意;当时,最大值大于,不符题意
试题解析:(1)函数的定义域为,
令,则有,
令,解得,
所以在上, , 单调递增,在上, , 单调递减.
又,所以在定义域上恒成立.
即在定义域上恒成立,
所以在上单调递减,在上单调递减.
(2)由在上恒成立得: 在上恒成立.
整理得: 在上恒成立.
令,易知,当时, 在上恒成立不可能, ,
又, ,
1°当时, ,又在上单调递减,所以在上恒成立,则在上单调递减,又,所以在上恒成立.
2°当时, , ,又在上单调递减,
所以存在,使得,
所以在上,在上,
所以在上单调递增,在上单调递减,
又,所以在上恒成立,
所以在上恒成立不可能.
综上所述, .
科目:高中数学 来源: 题型:
【题目】(2017·成都一诊)已知椭圆的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
(1)若直线l1的倾斜角为,求△ABM的面积S的值;
(2)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市高中全体学生参加某项测评,按得分评为两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为的学生中有40%是男生,等级为的学生中有一半是女生.等级为和的学生统称为类学生,等级为和的学生统称为类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,
类别 | 得分() | |
表1
(I)已知该市高中学生共20万人,试估计在该项测评中被评为类学生的人数;
(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名类学生”的概率;
(Ⅲ)在这10000名学生中,男生占总数的比例为51%, 类女生占女生总数的比例为, 类男生占男生总数的比例为,判断与的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,一个焦点坐标是,离心率为.
(1)求椭圆的标准方程;
(2)过作直线交椭圆于两点, 是椭圆的另一个焦点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com