精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P—ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)若底面ABCD为正方形,,求二面角C—AF—D大小.

【答案】(1)详见解析;(2)60°.

【解析】试题分析:(1)要证线面平行,即证线线平行;(2)建立空间直角坐标系,

试题解析:

(Ⅰ)连接BD,设AC∩BD=O,连结OE,

∵四边形ABCD为矩形,∴O是BD的中点,

∵点E是棱PD的中点,∴PB∥EO,

又PB平面AEC,EO平面AEC,

∴PB∥平面AEC.

(Ⅱ)由题可知AB,AD,AP两两垂直,则分别以的方向为坐标轴方向建立空间直角坐标系.明确平面DAF的一个法向量为,利用二面角公式求角.

设由可得AP=AB,

于是可令AP=AB=AD=2,则

A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(1,1,1)

设平面CAF的一个法向量为.由于

所以,解得x=-1,所以

因为y轴平面DAF,所以可设平面DAF的一个法向量为

由于,所以,解得z=-1,

所以

.所以二面角C—AF—D的大小为60°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数),

(1)求函数单调区间;

(2)当时,

①求函数上的值域;

②求证:,其中.(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线处的切线方程为

(1)求的值;

(2)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某条生产线上随机抽取100件产品,测量这些产品的某项技术指标值x,得到如下的频率分布表:

x

[11,13)

[13,15)

[15,17)

[17,19)

[19,21)

[21,23)

频数

2

12

34

38

10

4

(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;

(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M{x|xmmZ}N{x|xnZ}P{x|xpZ}试确定MNP之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数.

(1)求定义域;

(2)判断的奇偶性,并说明理由;

(3)求使的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数若同时满足下列条件:

内单调递增或单调递减

存在区间使上的值域为;那么把叫闭函数.

1求闭函数符合条件的区间

2判断函数是否为闭函数并说明理由

3判断函数是否为闭函数若是闭函数求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四个小球,分别写有”“”“”“四个字,有放回地从中任取一个小球,取到就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生14之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有”“”“”“四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:

13 24 12 32 43 14 24 32 31 21

23 13 32 21 24 42 13 32 21 34

据此估计,直到第二次就停止的概率为(  )

A. B.

C. D.

查看答案和解析>>

同步练习册答案