精英家教网 > 高中数学 > 题目详情
19.用符号“∈”或“∉”填空:
(1)0∉∅;
(2)0∈{0};
(3)-$\frac{1}{2}$∉Q;
(4)-2∈{x||x|=2};
(5)2∉{x|x2+4=0};
(6)0∈{x||x|=0}.

分析 可判断(1)0∉∅;(2)0∈{0};(3)-$\frac{1}{2}$∉Q;(4)-2∈{x||x|=2};(5)2∉{x|x2+4=0};(6)0∈{x||x|=0}.

解答 解:(1)0∉∅;
(2)0∈{0};
(3)-$\frac{1}{2}$∉Q;
(4)-2∈{x||x|=2};
(5)2∉{x|x2+4=0};
(6)0∈{x||x|=0}.

点评 本题考查了元素与集合的关系的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设集合A={x|(x+2)2=4},B={x|x2+2(a+1)x+a2-1=0,a∈R}
(1)若A∩B=B,求满足条件的实数a的值所组成的集合;
(2)若A∪B=B,求满足条件的实数a的值所组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若集合A={x|-1<x≤2},B={x|(x-a)(x-a+1)≥0},且A∩B=A,则实数a的取值范围是a≤-1或a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若函数y=f(x)的定义域为[-1,1].
(1)求函数f(x+1)的定义域;
(2)求函数y=f(x+$\frac{1}{4}$)+f(x-$\frac{1}{4}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,则m的取值范围是(  )
A.m<2B.m<3C.2<m≤3D.m≤3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.用适当的符号(∈,∉,=,?,?)填空:
(1){2}?{1,2,3};
(2)2∉{x|x>5};
(3)∅?{x|x≤-1};
(4){1,2,3}={3,2,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图.已知线性规划的可行域是由直线x=0,y=0,2y-x-10=0和2x-y-10=0围成的四边形.若点B是使目标函数z=ax+y取最大值的点.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.判断函数f(x)=$\frac{x-2}{x+1}$(x≥0)的单调性,并求出值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果集合A={y|y=x2},B={x|x=m2-2m+3},那么集合A与集合B之间的关系是B⊆A.

查看答案和解析>>

同步练习册答案