精英家教网 > 高中数学 > 题目详情
已知△ABC的三内角A,B,C成等差数列,BC=2,AC=3,
求:(1)边AB的长;
(2)△ABC的面积.
分析:(1)根据三内角成等差数列,利用等差数列的性质及三角形的内角和定理可得B的度数,进而求出sinB和cosB的值,然后由a与b的值,利用余弦定理列出关于c的方程,求出方程的解可得c的值,即为AB的长;
(2)由sinB的值,以及AB和BC的长,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(1)由2B=A+C,且A+B+C=180°,得到B=60°,
由BC=a=2,AC=b=3,cosB=cos60°=
1
2

由余弦定理得:cosB=
a2+c2-b2
2ac
=
22+c2-32
4c
=
1
2

整理得c2-2c-5=0,及(c-1)2=6,
解得:c1=1+
6
c2=1-
6
(舍去)

∴AB=1+
6

(2)由sinB=sin60°=
3
2
,AB=1+
6
,BC=2,
S△ABC=
1
2
AB•BC•sinB=
1
2
(1+
6
)×2×
3
2
=
3
+3
2
2
点评:此题考查了等差数列的性质,余弦定理,以及三角形的面积公式,其中根据三内角成等差数列,利用等差数列的性质得出B的度数是本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三内角A、B、C所对的边分别为a、b、c,且
.
a+ba-c
ca-b
.
=0

(1)求角B的大小;
(2)若a+c=8,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A、B、C所对的边分别为a、b、c,且
.
a+ba-c
ca-b
.
=0

(1)求角B的大小;
(2)若b=6,求△ABC的外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C成等差数列,则角B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C成等差数列,则 tan(A+C)=(  )
A、
3
3
B、-
3
3
C、-
3
D、
3

查看答案和解析>>

同步练习册答案