精英家教网 > 高中数学 > 题目详情
(选修4-2 矩阵与变换)已知二阶矩阵M有特征值λ=6及对应的一个特征向量e1=
.
1
1
.
,并且矩阵M对应的变换将点(-1,2)换成(-2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值,及对应的一个特征向量e2的坐标之间的关系.
分析:(1)先设矩阵 A=
ab
cd
,这里a,b,c,d∈R,由二阶矩阵M有特征值λ=6及对应的一个特征向量e1及矩阵M对应的变换将点(-1,2)换成(-2,4).得到关于a,b,c,d的方程组,即可求得矩阵M;
(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ-6)(λ-4)-8=λ2-10λ+16,从而求得另一个特征值为2,设矩阵M的另一个特征向量是e2=
x
y
,解得特征向量e2的坐标之间的关系.
解答:解:(1)设矩阵 A=
ab
cd
,这里a,b,c,d∈R,
ab
cd
1
1
=6
1
1
=
6
6
,故
a+b=6
c+d=6

ab
cd
-1
2
=
-2
4
,故
-a+2b=-2
-c+2d=4

联立以上两方程组解得a=
14
3
,b=
4
3
,c=
8
3
,d=
10
3
,故M=
14
3
8
3
4
3
10
3

(2)由(1)知,矩阵M的特征多项式为f(λ)=λ2-8λ+12,故其另一个特征值为2,
设矩阵M的另一个特征向量是e2=
x
y
,则Me2=
6x+2y
4x+4y
=2
x
y
,解得2x+y=0
点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-2 矩阵与变换
已知矩阵A=
30
04
,点M(-1,-1),点N(1,1).
(1)求线段MN在矩阵A对应的变换作用下得到的线段M'N'的长度;
(2)求矩阵A的特征值与特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选做题】在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1 几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.选修4-2 矩阵与变换
若点A(2,2)在矩阵M=
cosα-sinα
sinαcosα
对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵.
C.选修4-4 坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,
曲线C1ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
(t∈R)交于A、B两点.求证:OA⊥OB.
D.选修4-5 不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-2 矩阵与变换.
已知二阶矩阵M
1
0
=
1
0
,M
1
1
=
2
2
,求M2
1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-2 矩阵与变换
已知M=
1-2
-21
,α=
3
1
,试计算M20α.

查看答案和解析>>

同步练习册答案