精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为 ().

(1)求数列的通项公式;

(2)设,求数列的前项和.

【答案】(1);(2).

【解析】试题分析:(1) 由可得 ,两式相减得, ,即 ( ),从而可得数列为等比数列,进而可得数列的通项公式;(2)由(1)得, ,利用裂项相消法求解即可.

试题解析:(1)

①,可得 ②.

①-②得, ,即 ( ).

.

时, ,所以.

(1)由(1)得,

所以.

所以.

【方法点晴】本题主要考查等比数列的定义与通项公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题 ,函数有意义;命题 ,不等式恒成立,如果命题“”为真命题,命题“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,﹣2),椭圆E: =1(a>b>0)的离心率为 ,F是椭圆的焦点,直线AF的斜率为 ,O为坐标原点.
(Ⅰ)求E的方程;
(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1g(1﹣x)的值域为(﹣∞,0),则函数f(x)的定义域为(
A.[0,+∞]
B.(0,1)
C.[﹣9,+∞)
D.[﹣9,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设公差不为零的等差数列{an}的前5项的和为55,且a2 ﹣9成等比数列.
(1)求数列{an}的通项公式.
(2)设数列bn= ,求证:数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn+an=4,n∈N*
(1)求数列{an}的通项公式;
(2)已知cn=2n+3(n∈N*),记dn=cn+logCan(C>0,C≠1),是否存在这样的常数C,使得数列{dn}是常数列,若存在,求出C的值;若不存在,请说明理由.
(3)若数列{bn},对于任意的正整数n,均有 成立,求证:数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:

(1)本次一共调查了多少名学生.(2)在图(1)中将对应的部分补充完整.

(3)若该校有3 000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5时以下?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场对顾客实行购物优惠活动,规定一次购物付款总额:

(1)如果不超过200元,则不给予优惠;

(2)如果超过200元但不超过500元,则按标价给予9折优惠;

(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.

某人单独购买AB商品分别付款168元和423元,假设他一次性购买AB两件商品,则应付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

同步练习册答案