精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数,若满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界

1)设,判断上是否是有界函数,若是,说明理由,并写出所有上界的值的集合;若不是,也请说明理由.

2)若函数上是以为上界的有界函数,求实数的取值范围.

【答案】1)是有界函数;2

【解析】

1)分离常数后,可得函数的单调性,在区间内求得最大值与最小值,即可根据有界函数的定义求得的取值范围.

2)根据有界函数定义,可得的值域.代入解析式可分离得的不等式组.利用换元法转化为二次不等式形式,结合恒成立条件,即可求得的取值范围.

1

上单调递增

所以对任意满足

所以

恒成立,

所有上界的值的集合为

2)函数上是以为上界的有界函数

根据有界函数定义,可知上恒成立

所以

化简变形可得

上恒成立

即满足

由二次函数性质可知,,,

,所以当,

,

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,MPC中点.求证:

(1)PA∥平面MDB;

(2)PDBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的左右焦点分别为为椭圆上位于轴同侧的两点,的周长为的最大值为.

(Ⅰ)求椭圆的方程;

(Ⅱ)若,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的右焦点,点分别是轴,轴上的动点,且满足.若点满足为坐标原点).

(Ⅰ)求点的轨迹的方程;

(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点,试判断以线段为直径的圆是否经过点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某镇有一块空地,其中.当地镇政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖,其中MN都在边上,且,挖出的泥土堆放在地带上形成假山,剩下的地带开设儿童游乐场.为安全起见,需在的周围安装防护网.

1)当时,求防护网的总长度;

2)为节省资金投入,人工湖的面积要尽可能小,设,问:当多大时的面积最小?最小面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l12xy20l2x2y40,点P(1, m)

)若点P到直线l1, l2的距离相等,求实数m的值;

)当m1时,已知直线l经过点P且分别与l1, l2相交于A, B两点,若P恰好

平分线段AB,求A, B两点的坐标及直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数xy满足,则z的取值范围是______.表示ab两数中的较大数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

若曲线处的切线斜率为-2,求该切线的方程

求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆上至少有三个不同的点到直线的距离为,则直线l的倾斜角的取值范围是( )

A.B.

C.D.

查看答案和解析>>

同步练习册答案