【题目】已知函数.
(1)若函数是偶函数,求实数的值;
(2)若函数,关于的方程有且只有一个实数根,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.
(1)估计这200名学生健康指数的平均数和样本方差(同一组数据用该组区间的中点值作代表);
(2)由频率分布直方图知,该市学生的健康指数近似服从正态分布,其中近似为样本平均数,近似为样本方差.
①求;
②已知该市高三学生约有10000名,记体质健康指数在区间的人数为,试求.
附:参考数据,
若随机变量服从正态分布,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,平面平面,,,若为的中点.
(1)证明:平面;
(2)求异面直线和所成角;
(3)设线段上有一点,当与平面所成角的正弦值为时,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,
直线与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆C上一点,若过点的直线与椭圆C相交于不同的两点S和T,
满足(O为坐标原点),求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在层班级,生物在层班级.该校周一上午选科走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有( )
第一节 | 第二节 | 第三节 | 第四节 |
地理层2班 | 化学层3班 | 地理层1班 | 化学层4班 |
生物层1班 | 化学层2班 | 生物层2班 | 历史层1班 |
物理层1班 | 生物层3班 | 物理层2班 | 生物层4班 |
物理层2班 | 生物层3班 | 物理层1班 | 物理层4班 |
政治1班 | 物理层3班 | 政治2班 | 政治3班 |
A.8种B.10种C.12种D.14种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.得到甲、乙两位学生成绩的茎叶图.
(1)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为选派哪位学生去参加更合适?请说明理由;
(2)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com