精英家教网 > 高中数学 > 题目详情

【题目】已知首项是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求数列{cn}的通项公式;
(2)若bn=3n1 , 求数列{an}的前n项和Sn

【答案】
(1)解:∵anbn+1﹣an+1bn+2bn+1bn=0,cn=

∴cn﹣cn+1+2=0,

∴cn+1﹣cn=2,

∵首项是1的两个数列{an},{bn},

∴数列{cn}是以1为首项,2为公差的等差数列,

∴cn=2n﹣1


(2)解:∵bn=3n1,cn=

∴an=(2n﹣1)3n1

∴Sn=1×30+3×31+…+(2n﹣1)×3n1

∴3Sn=1×3+3×32+…+(2n﹣1)×3n

∴﹣2Sn=1+2(31+…+3n1)﹣(2n﹣1)3n

∴Sn=(n﹣1)3n+1.


【解析】(1)由anbn+1﹣an+1bn+2bn+1bn=0,cn= ,可得数列{cn}是以1为首项,2为公差的等差数列,即可求数列{cn}的通项公式;(2)用错位相减法来求和.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为 ,在D上的概率为 ;对落点在B上的来球,小明回球的落点在C上的概率为 ,在D上的概率为 .假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:

(1)小明两次回球的落点中恰有一次的落点在乙上的概率;
(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是同一平面上不共线的四点,若存在一组正实数,使得,则三个角( )

A. 都是钝角B. 至少有两个钝角

C. 恰有两个钝角D. 至多有两个钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是(
表1

成绩
性别

不及格

及格

总计

6

14

20

10

22

32

总计

16

36

52

表2

视力
性别

总计

4

16

20

12

20

32

总计

16

36

52

表3

智商
性别

偏高

正常

总计

8

12

20

8

24

32

总计

16

36

52

表4

阅读量
性别

丰富

不丰富

总计

14

6

20

2

30

32

总计

16

36

52


A.成绩
B.视力
C.智商
D.阅读量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.

(1)大气污染可引起心悸、呼吸困难等心肺疾病. 为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

20

5

25

10

15

25

合计

30

20

50

问有多大的把握认为是否患心肺疾病与性别有关?

(2)空气质量指数PM2.5(单位:μg/)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重. 某市在2016年年初着手治理环境污染,改善空气质量,检测到20161~5月的日平均PM2.5指数如下表:

月份x

1

2

3

4

5

PM2.5指数y

79

76

75

73

72

试根据上表数据,求月份xPM2.5指数y的线性回归直线方程,并预测20168月份的日平均PM2.5指数 (保留小数点后一位).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数有两个极值点,其中,且,则方程的实根个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若关于的方程有实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, 为侧棱的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)若,,

求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a5成等比数列.
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案