如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.
(1)延长MP交CN于点E(如图2).
①求证:△BPM≌△CPE;
②求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.
(1)结合三角形的边和角来证明全等同时得到线段的对应相等的证明。
(2) PM="PN" 成立,同样是借助于三角形的全等来证明。
(3) “四边形MBCN是矩形,则PM=PN成立”
【解析】
试题分析:(1)证明:①如图2:
∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMN=∠CNM=90°,
∴BM∥CN,
∴∠MBP=∠ECP,
又∵P为BC边中点,
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE, 3分
②∵△BPM≌△CPE,
∴PM=PE∴PM="1" 2 ME,
∴在Rt△MNE中,PN="1" 2 ME, 4分
∴PM=PN.
(2)解:成立,如图3.
证明:延长MP与NC的延长线相交于点E,
∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,
∴BM∥CN∴∠MBP=∠ECP, 6分
又∵P为BC中点,
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE,
∴PM=PE,
∴PM="1" 2 ME,
则Rt△MNE中,PN="1" 2 ME,
∴PM=PN. 8分
(3)解:如图4,
四边形M′BCN′是矩形,
根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP, 9分
得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”. 10分
考点:相似三角形
点评:解决该试题的关键是对于相似三角形的性质的熟练运用,属于基础题。
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
图1-9
A.△AED∽△ACB B.△AEB∽△ACD
C.△BAE∽△ACE D.△AEC∽△DAC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com