精英家教网 > 高中数学 > 题目详情
12.已知集合A={x||x+1|<3,x∈Z},则集合A的真子集的个数为31.

分析 求解二次不等式化简A,然后可得集合A的真子集个数.

解答 解:∵|x+1|<3,
∴-3<x+1<3,
∴-4<x<2
∴A={x||x+1|<3,x∈Z}={-3,-2,-1,0,1},
∴集合A的真子集个数为25-1=31个.
故答案为:31.

点评 本题考查子集与真子集,考查二次不等式的解法,对于集合M的子集问题,一般来说,若M中有n个元素,则集合M的子集共有2n个,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设a,b,c,d∈R,a2+b2=c2+d2=1,求abcd的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P、Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)当PQ=2$\sqrt{3}$时,求直线l的方程;
(2)探索$\overrightarrow{AM}$•$\overrightarrow{AN}$是否为定值,若是,请求出其值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+1|+|x-1|.
(Ⅰ)判断并证明函数f(x)的奇偶性;
(Ⅱ)作出函数f(x)的图象,并求其单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\sqrt{3}cos(\frac{π}{2}-2x)+2{cos^2}x-1$
(1)求函数f(x)的最小正周期和对称轴方程;
(2)将f(x)的图象左移$\frac{π}{12}$个单位,再向上移1个单位得到g(x)的图象,试求g(x)在区间$[0,\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若以曲线y=f(x)上任意一点M1(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点做切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”,现有下列命题:①偶函数的图象都具有“可平行性”;②函数y=sinx的图象具有“可平行性”;③三次函数f(x)=x3-x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足${x_1}+{x_2}=\frac{2}{3}$;④要使得分段函数$f(x)=\left\{\begin{array}{l}x+\frac{1}{x}(x>m)\\{e^x}-1(x<0)\end{array}\right.$的图象具有“可平行性”,当且仅当实数m=1.
以上四个命题真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)=ax3+bx-$\frac{c}{x}+2$,若f(3)=5,则f(-3)的值为(  )
A.3B.-1C.7D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a、b、c分别是角A、B、C的对边,且$\frac{cosB}{cosC}=-\frac{b}{2a+c}$.
(1)求角B的大小;
(2)若b=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x>0}\\{0,x=0}\\{{x^2}+mx,x<0}\end{array}}\right.$为奇函数.
(Ⅰ)求f(-1)以及实数m的值;
(Ⅱ)写出函数f(x)的单调递增区间;
(Ⅲ)若f(a)=1,求a的值.

查看答案和解析>>

同步练习册答案