【题目】已知椭圆的两焦点为
,
,且过点
,直线
交曲线
于
,
两点,
为坐标原点.
(1)求椭圆的标准方程;
(2)若不过点
且不平行于坐标轴,记线段
的中点为
,求证:直线
的斜率与
的斜率的乘积为定值;
(3)若直线过点
,求
面积的最大值,以及取最大值时直线
的方程.
【答案】(1)(2)见解析 (3)最大值
.
【解析】
(1)根据焦点求得,结合
点坐标列方程组,解方程组求得
,进而求得椭圆的标准方程.
(2)设出直线的方程,联立直线
的方程和椭圆方程,写出韦达定理,由此计算出
为定值.
(3)设出直线的方程,联立直线
的方程和椭圆方程,写出韦达定理,根据弦长公式和点到直线的距离公式,求得
面积的表达式,利用换元法,结合基本不等式求得面积的最大值,以及此时直线
的方程.
(1)由题意知有,且
,解得
,∴
.
(2)证明:设直线的方程为
,
设,
,
,
则由可得
,即
,
∴,∴
,
,
,
∴直线的斜率与
的斜率的乘积
为定值.
(3)点,
,
由可得
,
,解得
,
,
,
∴
.
设,
,
,
,
当时,
取得最大值
.
此时,即
,
所以直线方程是.
科目:高中数学 来源: 题型:
【题目】某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;
(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF
连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的飞速发展,人民生活水平得到很大提高,汽车已经进入千千万万的家庭.大部分的车主在购买汽车时,会在轿车或者中作出选择,为了研究某地区哪种车型更受欢迎以及汽车一年内的行驶里程,某汽车销售经理作出如下统计:
购买了轿车(辆) | 购买了 | |
| ||
|
表
图
(I)根据表,是否有
的把握认为年龄与购买的汽车车型有关?
(II)图给出的是
名车主上一年汽车的行驶里程,求这
名车主上一年汽车的平均行驶里程(同一组中的数据用该组区间的中点值作代表);
(III)用表中的频率估计概率,随机调查
名
岁以下车主,设其中购买了轿车的人数为
,求
的分布列与数学期望.
附:,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将个不同的红球和
个不同的白球,放入同一个袋中,现从中取出
个球.
(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;
(2)取出一个红球记分,取出一个白球记
分,若取出
个球的总分不少于
分,则有多少种不同的取法;
(3)若将取出的个球放入一箱子中,记“从箱子中任意取出
个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到
个红球并且恰有一次取到
个白球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年,中国某省的一个地区社会民间组织为年龄在30岁-60岁的围棋爱好者举行了一次晋级赛,参赛者每人和一位种子选手进行一场比赛,赢了就可以晋级,否则,就不能晋级,结果将晋级的200人按年龄(单位:岁)分成六组:第一组,第二组
,第三组
,第四组
,第五组
,第六组
,下图是按照上述分组方法得到的频率分布直方图.
(1)求实数的值;
(2)若先在第四组、第五组、第六组中按组分层抽样共抽取10人,然后从被抽取的这10人中随机抽取3人参加优胜比赛.
①求这三组各有一人参加优胜比赛的概率;
②设为参加优胜比赛的3人中第四组的人数,求
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,A(0,1),AB边上的高CD所在直线的方程为x+2y-4=0,AC边上的中线BE所在直线的方程为2x+y-3=0.
(1)求直线AB的方程;
(2)求直线BC的方程;
(3)求△BDE的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:
.
(Ⅰ)、
是抛物线
上不同于顶点
的两点,若以
为直径的圆经过抛物线的顶点,试证明直线
必过定点,并求出该定点的坐标;
(Ⅱ)在(Ⅰ)的条件下,抛物线在、
处的切线相交于点
,求
面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com