精英家教网 > 高中数学 > 题目详情

【题目】交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位: ),现将其分成六组为 后得到如图所示的频率分布直方图.

(1)某小型轿车途经该路段,其速度在以上的概率是多少?

(2)若对车速在 两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在内的概率.

【答案】(1) (2)

【解析】试题分析:(1)根据频率和为1,求出速度在70km/h以上的频率即可;

(2)求出40辆车中车速在[60,65)以及[65,70)内的车辆,利用列举法计算基本事件数,求出对应的概率值.

试题解析:

(1)速度在以上的概率约为

.

(2)40辆小型轿车车速在范围内有2辆,在范围内有4辆.

表示范围内2辆小型轿车,用表示车速在范围内有4辆小型轿车,则所有基本事件为 ,至少有一辆小型轿车车速在范围

事件有

所以所求概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点的直线与抛物线交于两点,若在准线上的射影为,则等于(  ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数

(1)若,求不等式的解;

(2)对任意,试确定函数的最小值(用含的代数式表示),若正数满足,则分别取何值时,有最小值,并求出此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个生产公司投资A生产线500万元,每万元可创造利润万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了;若将少用的x万元全部投入B生产线,每万元创造的利润为万元,其中

若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;

若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )

A. B. C. D.

【答案】D

【解析】在三棱锥中,因为 ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.

点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.

型】单选题
束】
21

【题目】已知函数,则的大致图象为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,直线过点且依次交抛物线及圆四点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次数学知识竞赛中,两组学生成绩如下表:

分数

50

60

70

80

90

100

人数

甲组

2

5

10

13

14

6

乙组

4

4

16

2

12

12

已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运动会时,高一某班共有28名同学参加比赛,每人至多报两个项目.15人参加游泳,8人参加田径,14人参加球类.同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,则只参加一个项目的有______人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求平面与平面所成二面角的大小;

2)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

同步练习册答案