【题目】已知、分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .
(1)求椭圆的离心率;
(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线与的斜率之积;
(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为、,直线的横、纵截距分别为、,求证: 为定值.
【答案】(1);(2);(3)见解析.
【解析】试题分析:
(1)利用题意得到关于的齐次方程,求解方程组可得椭圆的离心率;
(2) 由题意, , ,则,结合(1)的结论可得.
(3) 由(1)知椭圆方程为,圆的方程为.
四边形的外接圆方程为,
所以,因为点在椭圆上,则.
试题解析:
解:(1)由轴,知,代入椭圆的方程,
得,解得.
又,所以,解得.
(2)因为四边形是平行四边,所以且轴,
所以,代入椭圆的方程,解得, 因为点在第一象限,所以,同理可得, , 所以,
由(1)知,得,所以.
(3)由(1)知,又,解得,所以椭圆方程为,
圆的方程为 ①. 连接,由题意可知, , ,
所以四边形的外接圆是以 为直径的圆,
设,则四边形的外接圆方程为,
令,则;令,则. 所以,
因为点在椭圆上,所以,所以.
科目:高中数学 来源: 题型:
【题目】已知圆过两点, ,且圆心在直线上.
(Ⅰ)求圆的标准方程;
(Ⅱ)直线过点且与圆有两个不同的交点, ,若直线的斜率大于0,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 底面,底面是直角梯形, , , , ,点在上,且.
(Ⅰ)已知点在上,且,求证:平面平面;
(Ⅱ)当二面角的余弦值为多少时,直线与平面所成的角为?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)一块长为、宽为的长方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒.
(Ⅰ)试把方盒的容积V表示为的函数;
(Ⅱ)试求方盒容积V的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)在平面直角坐标系xOy中,已知两点和,动点M满足,设点M的轨迹为C,半抛物线:(),设点.
(Ⅰ)求C的轨迹方程;
(Ⅱ)设点T是曲线上一点,曲线在点T处的切线与曲线C相交于点A和点B,求△ABD的面积的最大值及点T的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为 .
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆Cx2+y2+2x﹣4y+3=0
(1)已知不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;
(2)求经过原点且被圆C截得的线段长为2的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积;
(2)求该几何体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是( )
A.
B.2π
C.
D.3π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com