A. | $\frac{3}{4}+\frac{1}{2π}$ | B. | $\frac{1}{4}-\frac{1}{2π}$ | C. | $\frac{1}{2}-\frac{1}{π}$ | D. | $\frac{1}{2}+\frac{1}{π}$ |
分析 由题意易得所求概率为弓形的面积与圆的面积之比,分别求面积可得.
解答 解:∵复数z=(x-1)+yi(x,y∈R)且|z|≤1,
∴|z|=$\sqrt{(x-1)^{2}+{y}^{2}}$≤1,即(x-1)2+y2≤1,
∴点(x,y)在(1,0)为圆心1为半径的圆及其内部,
而y≥x表示直线y=x左上方的部分,(图中阴影弓形)
∴所求概率为弓形的面积与圆的面积一半的之比,
∴所求概率P=$\frac{\frac{1}{4}•π•{1}^{2}-\frac{1}{2}×1×1}{\frac{1}{2}•π•{1}^{2}}$=$\frac{1}{2}$-$\frac{1}{π}$
故选:C.
点评 本题考查几何概型,涉及复数以及圆的知识,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({\frac{1}{4},+∞})$ | B. | (0,$\frac{1}{4}$) | C. | $({-∞,\frac{1}{4}})$ | D. | $({-∞,\frac{1}{4}})∪({\frac{1}{4},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(-1)-f(2)>0 | B. | f(1)-f(-2)=0 | C. | f(1)-f(2)<0 | D. | f(-1)+f(2)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$ | B. | $f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$ | ||
C. | $f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$ | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com