精英家教网 > 高中数学 > 题目详情
如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有(  )
①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
分析:由已知中点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,我们可得∠SAD为锐角,∠SEC为钝角,逐一分析题目中的四个结论,分别分析出它们的真假,即可得到答案.
解答:解:①若直线SA⊥平面SBC,
则直线SA与平面SBC均垂直,则SA⊥BC,
又由AD∥BC,则SA⊥AD,这与∠SAD为锐角矛盾,故①错误;
②∵平面SBC∩直线SA=S,
故平面SBC内的直线与SA相交或异面,故②错误;
③取AB的中点F,则CF∥AE,由线面平行的判定定理,可得CF∥SAE平行,故③正确;
④若SE⊥BA,由EC∥AB,可得SE⊥EC,这与∠SEC为钝角矛盾,故④错误;
故选A.
点评:本题考查的知识点是平面与平面垂直的性质,反证法,其中根据对于存在性结论的论证,从正面论证难度较大时,一般使用反证法来进行证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,点O是正方形纸片ABCD的中心,点E,F分别为AD,BC的中点,现沿对角线AC把纸片折成直二面角,则纸片折后∠EOF的大小为(  )
A、30°B、60°C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有
①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

科目:高中数学 来源:2008-2009学年福建省泉州市惠安县惠南中学高二(上)期末数学试卷(选修2-1)(理科)(解析版) 题型:选择题

如图,点O是正方形纸片ABCD的中心,点E,F分别为AD,BC的中点,现沿对角线AC把纸片折成直二面角,则纸片折后∠EOF的大小为( )

A.30°
B.60°
C.120°
D.150°

查看答案和解析>>

科目:高中数学 来源:2011年山西省高三考前适应性训练数学试卷(理科)(解析版) 题型:选择题

如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有( )
①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案